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Abstract: We present the interface diffraction method (IDM), an efficient
technique to determine the response of planar photonic crystal waveguides
and couplers containing arbitrary defects. Field profiles in separate regions
of a structure are represented through two contrasting approaches: the plane
wave expansion method in the cladding and a scattering matrix method in
the core. These results are combined through boundary conditions at the
interface between regions to model fully a device. In the IDM, the relevant
interface properties of individual device elements can be obtained from
unit cell computations, stored, and later combined with other elements as
needed, resulting in calculations that are over an order of magnitude faster
than supercell simulation techniques. Dispersion relations for photonic
crystal waveguides obtained through the IDM agree with the conventional
plane wave expansion method to within 2.2% of the stopband width.
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1. Introduction

Photonic crystals provide a flexible platform for the realization of many optical components
including passive, active, and nonlinear devices. Waveguides employing photonic crystals have
been studied widely because they confine light strongly and guide light over sharp bends with
low losses. The complexity of the interaction between electromagnetic waves and these periodic
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structures, however, poses a large challenge for the intuitive, yet quantitative, understanding of
their optical response.

Because they are periodic, the behaviour of photonic crystals is completely and efficiently
represented using a reduced-zone representation dispersion diagram [1, 2, 3] and its accompa-
nying Bloch modes. These are calculated from the representation of the crystal in reciprocal
space, working with the Fourier series of the dielectric constant. This Fourier space represen-
tation, however, prevents the direct use of band structures and Bloch modes in the analysis and
design of practical photonic crystal devices, which must necessarily be of finite size, and often
incorporate deviations from periodicity. For waveguides, this problem has been overcome by
the supercell method [4], where the waveguide including core and claddings is repeated peri-
odically in order to allow a plane wave treatment. The periodic units, however, must be large
enough to eliminate coupling between the parallel guides. Furthermore, the resulting modes
must be inspected carefully in order to discard the unphysical modes with energy concentrated
outside the core.

The limitations of periodic representations are surmounted by the finite-difference time-
domain (FDTD) simulation method [5, 6], one of the most common tools for the design of
photonic crystal devices. FDTD simulations operate in real (direct) space and make few as-
sumptions, if any, about the periodicity of the photonic crystal, enabling them to be applied to
almost any structure. At the same time, however, these simulations are inefficient since they
cannot apply results from one crystal unit cell to identical neighbouring ones.

Between the extremes of complete periodicity and aperiodicity exist a variety of methods
that take advantage of the results obtained efficiently from the periodic parts of a device while
allowing some deviation from this periodicity. Envelope approximations, similar in concept to
their use with semiconductor heterostructures [7], have been used to calculate pulse propagation
in a nonlinear crystal [8] and for photonic crystal heterostructures [9]. Here the periodicity of
each crystal section is used to extract a set of parameters describing the crystal in the same way
as effective masses are used in semiconductors. Using these parameters, an envelope equation
can be written that does not include the periodicities explicitly and is therefore easy to solve.
A similar approach was taken using multiple-scales techniques [10, 11]. Point and line defects
have also been represented using Wannier functions forming a localized basis, similar to the
tight-binding formalism [12]. Wannier functions have also been used to calculate the resonant
states of graded resonant cavities [13] and to derive a set of optimally adapted functions for
the simulation of waveguides and cavities [14]. The resonance of light in photonic crystals of
finite size has been computed with a plane wave expansion over the entire slab [15]. All these
methods replace Maxwell’s equations with a simplified set of equations to be solved in the
partially periodic structure.

We have recently introduced a method that uses the Bloch modes of infinite photonic crys-
tals to calculate the reflection, transmission, and diffraction of light at photonic crystal inter-
faces [16]. These coefficients, similar to the Fresnel coefficients for dielectric interfaces, can
then be used to model photonic crystal devices that include interfaces between photonic crys-
tals and homogeneous materials as a succession of effective materials, with propagation inside
each material described by its respective band structure. This method has been shown to sim-
ulate efficiently the response of point defect cavities, as well as line defect waveguides and
waveguide couplers [17]. So far this method has been limited by the fact that the devices could
only contain large periodic sections, where the electromagnetic field profiles took the form of
the bulk crystal modes, and homogeneous materials, with plane wave propagation.

Most photonic crystal waveguides and defect cavities demonstrated so far are obtained by
removing one cylinder, or a row of cylinders from a periodic 2D crystal [18, 19]. In the process
of optimizing the properties of these waveguides and resonant cavities, it was found that sig-
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nificant advantages can be obtained by the introduction of more elaborate defects. The rows of
cylinders adjacent to the missing rows can, for example, be modified to affect the propagation
in the core [20]. Alternatively, the cylinders in the core do not have to be removed completely,
as long as their diameter is changed [21, 22].

Transfer and scattering matrices have been used to model the transmission and reflection
from photonic crystals that are periodic in two directions but not necessarily in the third. The
same matrices have been used to compute the interaction of light with semi-infinite photonic
crystals [23].

In this paper we demonstrate that simulations conducted over photonic crystal unit cells
alone are sufficient to determine the response of photonic crystal waveguides and couplers with
complex defect regions. Using our technique, which we refer to as the interface diffraction
method (IDM), individual device elements, such as a row of cylindrical defects of a particular
radius or a bulk crystal region, can be simulated independently and combined as needed to
model a device. In contrast, the supercell waveguide simulation techniques described earlier
require computational domains consisting of many unit cells and must be done on a case-by-
case basis for even small changes in structure. The IDM also makes few assumptions about
the crystal geometry and defect type, making it more general than other approaches. It can be
applied to narrow or wide defect regions with abrupt or graded changes in structure, all within
the same theoretical framework without large increases in computation time. Moreover, the
IDM achieves its computational benefits through conceptually simple ingredients – the plane
wave expansion and scattering matrix methods – that can be obtained through a variety of
different techniques.

With the IDM, we take advantage of the respective strengths of reciprocal and real space
methods to model different waveguide regions. For the periodic parts of the device we use
Bloch modes obtained from a plane wave expansion [16]. The parts of the structure with de-
viations from periodicity are simulated using a plane wave based scattering matrix approach
described in Ref. [24]. The photonic crystal Fresnel coefficients are used to link the two sim-
ulation methods allowing very efficient modelling of structures with arbitrary geometries. In
this paper, we demonstrate the flexibility of the IDM with several types of photonic crystal
waveguides and a novel coupler design, at each step verifying its accuracy with comparisons to
numerical simulations.

2. Theory

2.1. Bloch mode and scattering matrix interface

Our method of simulating waveguides divides the devices into periodic cladding and aperiodic
core regions connected through infinitesimally thin homogeneous material layers. Inside the
photonic crystal claddings, fields are described by a superposition of Bloch modes that excite
a series of diffracted plane waves inside the core-cladding interface layer. These plane waves
propagate into the core and produce a set of reflected and transmitted waves whose amplitudes
are related through a scattering matrix.

In the following discussion, we employ a planar photonic crystal waveguide oriented as il-
lustrated in Fig. 1, with the dielectric slab parallel to the xy-plane and the waveguide extending
along the x-direction. The vectors x̂, ŷ, and ẑare the Cartesian unit vectors. The Bloch modes of
the photonic crystal cladding are calculated using the plane wave expansion method introduced
in Ref. [16]. In this method, we specify the angular frequency ω, the lateral wave vector k0,‖,
and the normal vector n̂ to a given interface to obtain a set of Bloch modes with these prop-
erties and their corresponding complex wave vector components along n̂. For a core-cladding
interface parallel to the xz-plane, k0,‖ = k0,xx̂+ k0,zẑ, n̂ = ŷ, and the resulting complex wave
vectors are kB±

j = k0,‖ +kB±
j,y ŷ, where ± indicates the direction of propagation or decay of the
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Bloch mode along ŷ, j labels each of the modes at a given frequency, and kB±
j,y are the complex

wave vector components. Thus crystal modes calculated from this method provide a complex
band structure composed of Bloch wave vectors with real and imaginary parts. Inside the crys-
tal passbands, the band structure has some modes with purely real wave vectors corresponding
to freely propagating Bloch modes and others with complex wave vector components charac-
terizing the exponential decay rates of evanescent Bloch modes. Inside the photonic crystal
stopbands, the band structure consists entirely of evanescent modes. We represent the fields
inside the cladding with a superposition of these Bloch modes given by the following equation:

EB(r) = ∑
j
∑
α

ξ Bα
j

{
∑

l ,m,n

EBα
jlmn exp

[
i
(
kBα

j +Glmn
) · r]

}
, (1)

where α is either + or −; Glmn are the reciprocal lattice vectors specified through indices l ,
m, and n; EBα

jlmn are the Fourier components of the Bloch modes; and ξ Bα
j are the amplitude

coefficients of the Bloch modes.

EB,R
+y Cladding

x

EB,L
−

L
−

z Cladding Core

h hn

Interface layers

n

EL
+

ER
+

ER
−

E

Fig. 1. Schematic illustration of the IDM viewing a planar triangular photonic crystal device
from above. The core and cladding areas are separated by thin interface layers. The dashed
rectangles mark the simulation cells used for each device region.

To model two-dimensionally patterned slab waveguides in our 3D plane wave expansion,
we simulate a 3D unit cell with artificial periodicity normal to the slab plane [4]. Despite the
unphysical nature of this approach, extending the cell in the vertical direction can effectively
eliminate the interaction of confined modes with neighbouring slabs because these modes de-
cay exponentially above and below the slab. Although we do form a supercell in the vertical
direction for these simulation cells, they are still much smaller than the supercells used in
other methods, which are extended both laterally and vertically. For a planar photonic crystal
with a square lattice of holes, we employ an extended unit cell of height h in the z-direction
and of length a in the x- and y-directions. This crystal has a set of reciprocal lattice vectors
given by: Glmn = lb2 +mb1 +nb3 where b1 = 2πa−1x̂, b2 = 2πa−1ŷ, and b3 = 2πh−1ẑ. At the
core-cladding interface, the Bloch modes excite a set of diffracted waves in the homogeneous
interface layer that are periodic over the interface plane:

Eh(r) = ∑
m,n

[
E+

mnexp(ikmn,yy)+E−
mnexp(−ikmn,yy)

]
exp
[
i
(
k0,‖ +Gmn,‖

) · r‖] , (2)
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where Gmn,‖ = (Glmn· x̂)x̂+(Glmn· ẑ)ẑ= 2πma−1x̂+2πnh−1ẑis the set of reciprocal lattice vec-

tors projected onto the interface plane, r‖ = xx̂+zẑ, and kmn,y = [(nhω/c)2−|k0,‖+Gmn,‖|2]1/2

in a homogeneous layer of index nh.
The application of boundary conditions over the interface ensures that coupling occurs only

between Bloch modes and plane waves with the same propagation constant in the core-cladding
interface plane and yields the following set of equations for each diffraction order:

∑
j

(
B+

jmn,x B−
jmn,x

B+
jmn,z B−

jmn,z

)(
ξ B+

j

ξ B−
j

)
=
(

E+
mn,x

E+
mn,z

)
+
(

E−
mn,x

E−
mn,z

)
, (3)

∑
j

(
C+

jmn,x C−
jmn,x

C+
jmn,z C−

jmn,z

)(
ξ B+

j

ξ B−
j

)
=

1
kmn,y

(
k′xk′z ω2 −k′2x

k′2z −ω2 −k′xk′z

)[(
E+

mn,x
E+

mn,z

)
−
(

E−
mn,x

E−
mn,z

)]
, (4)

where k′x = k0,x+Glmn· x̂= k0,x+2πma−1 and k′z = k0,z+Glmn· ẑ= k0,z+2πnh−1. The elements
B±

jmn,x/z and C±
jmn,x/z on the left side of Eqs. (3) and (4) reflect the electric and magnetic field

amplitudes of the crystal modes at the plane y = y0 in the unit cell and are defined:

B±
jmn = ∑

l

EB±
jlmn exp

(
iGl ,⊥y0

)
, (5)

C±
jmn = ∑

l

(kB±
j +Glmn)×EB±

jlmn exp
(
iGl ,⊥y0

)
, (6)

where Gl ,⊥ = Glmn · ŷ = 2πla−1 is the set of reciprocal lattice vectors projected onto n̂.
With column vectors E+

B = (· · · ,ξ B+
j ,ξ B+

j+1, · · ·)T , E−
B = (· · · ,ξ B−

j ,ξ B−
j+1, · · ·)T , E+ =

(· · · ,E+
mn,x,E

+
mn,z, · · ·)T , and E− = (· · · ,E−

mn,x,E
−
mn,z, · · ·)T , we can combine Eqs. (3) and (4)

to form the transfer matrix T containing the diffraction coefficients required to compute the set
of plane waves excited by an arbitrary combination of Bloch modes in the cladding:(

E+

E−

)
= T

(
E+

B
E−

B

)
=
(

T11 T12

T21 T22

)(
E+

B
E−

B

)
. (7)

The scattering matrix for the interface, which describes the outgoing modes produced by an
arbitrary set of incoming ones, can be readily derived from the elements of the transfer ma-
trix [25, 26].

After calculating the transfer matrix describing the waveguide at the cladding to homoge-
neous material interface, we can simulate the remaining core region of the device using the
plane wave based scattering matrix method described in Ref. [24]. In this approach, a dielec-
tric structure with transverse periodicity is divided along the propagation direction into slices
separated by infinitesimally thin homogeneous films. For the dielectric slices, we calculate the
scattering matrices relating the diffracted plane waves excited in the two films surrounding each
slice. Applying the usual scattering matrix recursion formulae [25, 26] to each of the matrices
yields the scattering matrix for the entire structure. The scattering matrix S for the waveguide
determines the set of outgoing plane waves E−

L and E+
R from the core produced by an arbitrary

set of waves E+
L and E−

R incident on the core:(
E+

R
E−

L

)
= S

(
E+

L
E−

R

)
=
(

S11 S12

S21 S22

)(
E+

L
E−

R

)
. (8)

We can now determine the properties of the entire waveguide structure using the S-matrices
and T-matrices describing the behaviour of light at the homogeneous boundaries of the core
and cladding regions.
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2.2. Computing waveguide dispersion relations

Resonant states reflecting confined waveguide modes exist when the field profile of light inside
the core is unchanged following a round-trip from one edge of the core to the other. To deter-
mine the round-trip change in the field, we examine the fields at the core-cladding interface and
divide the propagation into two distinct phases. In the first phase, an incident set of plane-waves
E−

L in one of the interface planes strikes the cladding producing a reflected set of waves E+
L .

Since the cladding is semi-infinite and the frequencies of interest are inside the the photonic
crystal’s stopband, any incident Bloch mode will have decayed to zero at the core-cladding
interface, hence E+

B = 0. This condition enables the incident and reflected fields to be related
simply through E+

L = T12T−1
22 E−

L . In the second phase, the first reflected set of waves propa-
gates through to the other side of core, reflects off the cladding, and propagates back through
the core. The relationship between incident E+

L and reflected E′−
L waves in this case is given by

E′−
L = [S12 +S11T12(T22 −S21T12)−1S22]E+

L . Applying the resonant state condition E′−
L = E−

L
yields the following:

E−
L =

[
S12 +S11T12 (T22 −S21T12)

−1 S22

]
T12T−1

22 E−
L . (9)

We can solve Eq. (9) as an eigenvalue problem noting that resonant states for the waveguide
occur when an eigenvalue of the system equals one.

For waveguides that are symmetric about the centre plane of the core, guided modes can
be divided into even and odd classes with respect to the mirror plane normal to the slab. For
resonant states in this case, the field profiles in the two core-cladding interfaces must satisfy
E+

R = ±E−
L and E+

L = ±E−
R . Applying symmetry considerations to the scattering matrix and

propagating the plane waves across to the other side of the core, we arrive at the following
guided mode condition:

E−
L = ±(1−S12T12T−1

22

)−1
S11T12T−1

22 E−
L . (10)

Eq. (10) can also be solved as an eigenvalue problem with even and odd guided modes obtained
for eigenvalues equal to +1 and −1, respectively.

To implement the eigenvalue equations above, we obtain the T-matrices governing the reflec-
tion from the claddings and the S-matrices describing propagation through the core at a given
k0,‖ and a number of frequency points inside the stopband. These matrices have no variable
elements and thus Eqs. (9) and (10) can be solved using standard computational techniques.
After calculating eigenvalues over a series of frequencies, we can interpolate their phase and
magnitude to find the resonant states of the system at a very fine frequency resolution. In prac-
tice, the matrices in Eqs. (9) and (10) are well-conditioned and their dimensions are not large,
with several hundred elements in 3D simulations and under 100 elements in 2D, enabling ex-
act eigenvalues to be obtained in seconds. The eigenvalues from Eq. (9) have magnitudes that
typically vary little over the stopband while those of Eq. (10) tend to vary rapidly. Both sets of
eigenvalues usually have phases that vary smoothly over the stopband. As a result, we prefer to
employ Eq. (9) for our simulations since interpolation is simpler and faster, and use Eq. (10) to
gain general information about the symmetry of the modes.

It is also possible to directly combine the S- and T-matrices defined in subsection 2.1 to com-
pute dispersion relations. In this approach, we determine the transmission through the cladding-
core-cladding structure in the direction normal to the waveguide. This method, however, proves
to be inefficient since Bloch modes and scattering matrices at many frequencies are required to
discern the very abrupt peaks in transmission that mark resonant states.
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2.3. Core and cladding modifications

Once the scattering and transfer matrices for different core and cladding regions are obtained,
waveguide elements can be combined arbitrarily to yield new designs. The scattering matrices
for core regions consisting of several rows of defects can be formed from those of a single row
defect using the scattering matrix recursion formulae [25, 26]. Another degree of freedom can
be achieved by displacing the cladding and core elements along the waveguide propagation
direction. For core region unit cells, the translation is performed by introducing a phase shift
into the incoming and outgoing plane wave coefficients to compensate for the relative positions
of neighbouring unit cells. For a translation r0,‖ = x0x̂+z0ẑin the xz-plane, the shifted scattering
matrix S′ is related to the original matrix S through:

S′ =
(

e−iG‖·r0,‖ 0
0 e−iG‖·r0,‖

)
S
(

e+iG‖·r0,‖ 0
0 e+iG‖·r0,‖

)
, (11)

where e±iG‖·r0,‖ is a diagonal matrix with diagonal elements exp(±iGmn,‖ · r0,‖). Similarly,
translations of the cladding unit cells are accomplished through the following operation:

T′ =
(

e+iG‖·r0,‖ 0
0 e+iG‖·r0,‖

)
T, (12)

where T and T′ are the initial and shifted matrices, respectively.

3. Results

In this section, we apply the IDM to a variety of different photonic crystal waveguide designs.
The bulk crystal in each of these waveguides consists of a triangular lattice of air holes etched in
a high index slab. In our first example, we determine the response of a full 3D planar photonic
crystal waveguide with a defect row of air holes. In the subsequent examples, we focus on 2D
waveguides to facilitate comparison with other methods.

3.1. 3D slab waveguide

The properties of photonic crystal waveguides can be tuned using different air hole defects
inside the core. In the waveguide we study here, the bulk crystal consists of holes of radius
0.29a, where a is the lattice constant, etched into a dielectric membrane of thickness 0.6a
and index 3.4. This particular crystal structure has been successfully fabricated and used in
waveguides [27] and high-quality factor cavities [28, 29]. It possesses a band gap ranging from
0.261c/a to 0.331c/a for even modes with respect to the in-slab mirror plane.

The waveguide core is formed by reducing the radii of a row of holes to 0.2a, establishing a
line defect capable of guiding light (Fig. 2(a)). To determine the properties of the waveguide,
we obtain the Bloch modes and scattering matrices for its unit cell components. The bulk crystal
Bloch modes are simulated using a computational cell of height 4a and length

√
3a with orthog-

onal axes (Fig. 1) and an expansion of 1575 plane waves. The resulting eigenvalue equation is
solved using an implementation of the implicitly restarted Arnoldi method (IRAM) [30] tuned
to find the Bloch modes with the slowest decay rates. The matrices in these computations are
well-conditioned and generally require fewer than 20 IRAM iterations to obtain Bloch modes
converged to machine precision. The core region scattering matrices are obtained from a cell of
the same height but of length

√
3/2a with an expansion of 128 diffracted waves.

To compute the dispersion relation (Fig. 2(b)), we form the transfer matrix using seven to
ten evanescent Bloch modes and employ Eq. (9) to find the resonant states. In practice, it is
rare to find resonant states where an eigenvalue is identically equal to one. Instead we employ a
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Fig. 2. (a) The slab waveguide with a row of defect air holes. The structure has index 3.4
and height 0.6a with 0.29a and 0.2a radius holes in the cladding and core, respectively. (b)
Dispersion relation for the slab waveguide.

weaker condition requiring the eigenvalue to be purely real with a magnitude greater than 0.6.
By asserting that eigenvalues are real, we ensure that the guided mode profile remains identi-
cal after a round-trip even if its amplitude may change. Using this condition, we find that the
waveguide dispersion relation agrees very closely with results obtained using the MIT Photonic
Bands (MPB) software package [3], with deviations in frequency of 2% of the stopband width
in the worst case and 0.9% on average. The weaker eigenvalue criterion we employ here is
general and has been applied to waveguides with different core radii. To emphasize the perfor-
mance advantages of the IDM, we note that the eigenvalue operation in Eq. (9) is performed
on matrices of dimension 256 in our method while the analogous supercell structure in MPB
requires the eigenvalues of matrices approximately two orders of magnitude larger.

Given the accuracy of our results, the lower than expected magnitudes of resonant state eigen-
values are likely the result of coupling between simulation cells above and below the waveguide
resulting from the artificial vertical periodicity we employ. Since the magnitude of the eigenval-
ues is related to the power retained in the waveguide over a round-trip about the core, it could
be reduced significantly by any vertical coupling losses out of the waveguide. Further examin-
ing the results, we find that the bands with even and odd symmetry with respect to the vertical
mirror plane along the core are marked by eigenvalues with largely different magnitudes. The
set of even modes with field energy concentrated at the centre of the core have eigenvalues of
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magnitude 0.6 to 0.7; in contrast, those with odd symmetry have magnitudes of 0.88 to 0.99
and their energy concentrated away from the centre. Since the air holes are located at the centre
of the core, the index confinement of the even modes must be weaker than that experienced
by the odd ones. Consequently, the lower magnitudes we observe can be related to the degree
of coupling to slabs above and below the core. This unwanted coupling could be reduced by
further extending our simulation cells in the vertical direction. Nevertheless, our results remain
very accurate even with these vertical losses. For similar simulations on 2D crystals of infinite
vertical extent, eigenvalues of resonant states have magnitudes much closer to one, as described
in subsection 3.2.

3.2. Tuned air hole core waveguides

While the waveguide studied in subsection 3.1 has a very simple structure, its properties can
be altered significantly by modifications to the radii and placement of the holes in the core
region. We investigate these effects by obtaining the dispersion relations for a series of 2D
waveguides with lattice mismatching of zero to 0.5a (Fig. 3(a)) and air hole radii in the core
ranging from zero to 0.425a (Fig. 4(a)). The photonic crystal system we use for this and the
remaining examples consists of a triangular lattice of air holes of radius 0.3a in a dielectric of
effective index 3.4 with a band gap over 0.211c/a to 0.279c/a in the TE polarized modes. This
set of simulations employs the 2D unit cell analogues of those used in the 3D slab waveguide.
Bloch modes are expressed using an expansion over 512 plane waves and solved using an IRAM
implementation [30]. Scattering matrices were computed for sets of 16 diffracted waves.
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Fig. 3. (a) Schematic of the waveguides simulated illustrating the shifting of core holes
from their regular lattice sites. (b) Dispersion relations for the waveguides with core radius
0.2a as the core-cladding offset is varied.

Figure 3(b) shows a sample dispersion relation for a core region of radius 0.2a with holes
displaced zero, 0.25a, and 0.5a from their regular lattice positions (Fig. 3(a)). The shift in
core position was performed using Eq. (12). For these 2D dispersion relations with no vertical
coupling losses, Eq. (9) returns modes with real eigenvalues averaging 0.98 with a standard
deviation of 0.02. We attribute the deviation in eigenvalue magnitudes to numerical errors cre-
ated in combining transfer and scattering matrices. Nevertheless, our results agree with MPB to
within 1.9% of the stopband width in the worst case. By changing the offset of the core holes
relative to the cladding, we can effectively translate the dispersion relation in frequency and
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propagation constant space. Increasing the offset moves the core and cladding air holes closer
to one another, lowering the frequencies of the bands and reducing their propagation constants.
This core offset alone can change the position of the zero group velocity frequency points of
the odd bands from 0.2602c/a to 0.2755c/a or 22.6% of the band gap.
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Fig. 4. (a) Schematic of the waveguides simulated illustrating the change in core hole ra-
dius. (b) Dispersion relations for the waveguides as the core hole radius is varied with no
lattice offset.

The second significant degree of freedom in this class of waveguides is obtained by varying
the radii of the air holes in the core. In Fig. 4(b) we present the dispersion relations for core
regions of radius 0.15a, 0.175a, and 0.2a with no lattice offset. Even for this small gradation
in radii, we observe noticeable shifts in the dispersion relations. The bands in this case are
translated almost directly up in frequency as the radius of the core holes increases, lowering the
core’s effective index. The zero group velocity point in the odd band shifts from 0.2662c/a to
0.2755c/a in frequency with only a very small change in propagation constant.

For waveguides with defect row radii ranging from zero to 0.225a, the dispersion relations
share the same overall band structure with smoothly descending even bands and concave down
odd bands, regardless of the offset of the core holes. For defect radii greater than this, the odd
bands grow flatter and are pushed out of the stopband along with the even modes. Even with
this simple waveguide system, we can tailor a potential device to exhibit particular properties
by varying its design over the two degrees of freedom. For instance, the location of the zero
group velocity state in the odd band can be varied from 0.2513c/a to 0.2809c/a in frequency
and 0.209× 2π/a to 0.318× 2π/a in the propagation constant as illustrated in Fig. 5. As one
would expect, the effect of the lattice mismatch between core and cladding increases as the
radius of the core holes increases leading to significant changes in waveguide response at the
largest radii.

3.3. Optimized waveguides

After building up a library of transfer and scattering matrices representing bulk crystals and
core regions, the computational speed of the IDM enables us to design waveguides with desired
properties simply by scanning over a large number of potential structures. We demonstrate this
through the design of a 2D photonic crystal waveguide with a single-moded frequency range
spanning 88.7% of the bulk crystal band gap.
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Fig. 5. (a) Frequency and (b) propagation constant of the zero group velocity point for odd
waveguide modes as a function of the core hole radius and lattice offset.

To shorten our search for optimal structures, we settle on a general waveguide design with
an asymmetric core consisting of three rows of air holes in a rectangular lattice. The Fresnel
coefficients of the bulk photonic crystal and scattering matrices for single row core regions
ranging from homogeneous to holes of radius 0.425a are available from the results of sub-
section 3.2. These stored scattering matrices can be combined arbitrarily using the scattering
matrix recursion formulae [25, 26] to represent the three row core region. In the first step of
our design process, we scan over a coarse set of nine different core radii to observe the range
of dispersion relations provided by our general waveguide structure. We obtain the series of
dispersion relations using LAPACK [31] subroutines to generate the eigenvalues of Eq. (9) at
64 frequency points per propagation constant, and employ an unoptimized root finding algo-
rithm to solve for the resonant states. The acquisition of 405 dispersion relations computed at
21 propagation constants takes approximately two hours on a Pentium IV running at 2.26GHz
using 650MBytes of memory, while the calculation of one such dispersion relation in MPB at
the same resolution would take approximately 15 minutes or more. After analyzing the first set
of dispersion relations, we develop a qualitative understanding of the effect of different core
designs on the response of the waveguide; in particular, we find that positive group velocity
bands spanning a large frequency range are established by core air holes with radii greater than
or equal to that of the bulk crystal.

With a general design rule in place, in the second scan we simulate a smaller range of core
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Fig. 6. The dispersion relation for the optimized structure with a single-moded frequency
range over 88.7% of the stopband width. Inset: schematic of the optimized waveguide with
a three row core of radii 0.4a, 0.425a, and 0.3a.

radii at smaller increments from 0.3a to 0.425a and search for dispersion relations that are
single-moded over large frequency ranges. The majority of dispersion relations from this set of
waveguides share a rising band over the full range of propagation vectors as expected, but also
have a second band in the lower half of the stopband that limits the single-moded frequency
range. By making small changes to the index profile of the core, we can expand the range of
frequencies covered by the rising band while pushing the lower band out of the stopband. An
analysis of the dispersion relations of the second set of waveguides reveals that a structure
consisting of a centre hole of radius 0.425a bordered by holes of radius 0.4a and 0.3a produces
the largest single-moded span (Fig. 6). For this asymmetric two row core structure, the rising
band covers 94.5% of the band gap and the single-moded region is determined principally by
the lower band, which terminates at 0.2186c/a, making the waveguide single-moded for 88.7%
of the stopband. The dispersion relation for this structure obtained through our method agrees
with MPB simulations to within 2.2% of the stopband width in the worst case. The width of this
waveguide is particularly interesting because it is wider than most other single-moded designs
and could be used to couple light from fibres more efficiently into photonic crystal devices.

3.4. Directional coupler

Directional couplers are important devices formed by two waveguides separated by a thin bar-
rier region. In these structures, light travelling in one waveguide can couple to the other enabling
power to be split between guides. The distance required for power to be completely transferred
from one waveguide to another is known as the coupling length. Minimization of this charac-
teristic length is crucial to the operation of microphotonic circuits.

In previous work with our complex Bloch modes [17], we had been limited to simulating
couplers with relatively thick barriers to ensure the fields in these regions could be accurately
represented by Bloch modes. As a result, the two waveguides could not interact strongly, lead-
ing to large coupling lengths in these devices. Here we circumvent this limitation by represent-
ing the barrier region as part of a single supercore structure described by scattering matrices.
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Fig. 7. Dispersion relation for the directional coupler and the equivalent single waveguide.
Inset: schematic of the coupler with a pair of identical waveguides formed by two rows of
holes of radius 0.4a separated by a row of holes of radius 0.3a.

We demonstrate this approach on a novel structure designed with the insights of subsec-
tion 3.3 in mind. Our coupler consists of two identical waveguides separated by a barrier made
up of a single row of air holes (Fig. 7). The waveguides are formed from two parallel rows
of 0.4a radius air holes such that the entire coupler consists of five defect rows with the holes
arranged in a rectangular lattice. When combined with the barrier region, these two row core
waveguides are very similar in structure to the optimized waveguide described in subsection 3.3.
Like the tuned structure, the coupler’s equivalent single waveguide possesses a rising single-
moded band over a relatively large frequency range, 78.0% of the band gap in this case (Fig. 7).
In this coupler design, the barrier serves a dual purpose in separating the waveguides and tai-
loring their dispersion relations.

We calculate the supermodes of the entire directional coupler with a scattering matrix rep-
resenting the five rows of the core and proceed in a manner similar to the one described in
Ref. [32]. The modes of the device come in complementary pairs of even and odd modes at
frequencies above and below the bands of the individual waveguide structure (Fig. 7). As a
result of this mode symmetry, a superposition of modes can propagate along the coupler with
different propagation constants, shifting power from one waveguide to the other as they beat in
and out of phase. At a frequency of 0.25c/a, the even and odd supermodes in the structure have
propagation constants βodd and βeven that differ by 0.1046× 2π/a. The beat length LB of the
directional coupler at this frequency is given by:

LB =
2π

|βodd−βeven| = 9.56a, (13)

resulting in a coupling length of 4.78a, which agrees to within 2.7% of the value predicted
by MPB. This coupler also has a fairly large potential range of operation from 0.225c/a to
0.262c/a or 54.9% of the stopband width, where only one pair of symmetrical supermodes
exists. In addition, the bands have roughly constant group velocities over much of this range
enabling the coupling lengths to remain fairly similar over a significant frequency span.
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4. Conclusions

We have demonstrated an efficient interface diffraction method of simulating planar photonic
crystal waveguides and couplers with arbitrary defect regions. The IDM merges two contrasting
approaches – the plane wave expansion method in reciprocal space and the scattering matrix
method in real space – and takes advantage of their respective strengths to accurately determine
the field profiles inside the cladding and core regions of a device. Since IDM simulations are
conducted only on the unit cell elements of a structure, Bloch modes and scattering matrices
can be computed in advance and used to obtain results over an order of magnitude faster than
supercell techniques, in which simulations must be run on a case-by-case basis. Further, the
IDM has a conceptually simple framework and is quite general, making few assumptions about
device geometry and structure. It can be applied to narrow or wide defect regions with abrupt or
graded changes in structure, all within the same theoretical approach without large increases in
computation time. Through the IDM individual waveguide elements can be combined and posi-
tioned rapidly, facilitating the design of waveguides and couplers with elaborate defect regions.
Moreover, with its high computational efficiency, the IDM can be used to optimize photonic
crystal structures over several degrees of freedom, ensuring they possess particular properties
such as large single-moded frequency ranges, high group velocities, and small coupling lengths.

In future work, the IDM could be extended by employing other techniques [33, 34] to enable
mode-matching at the top and bottom surfaces of the slab to obviate the current need for sim-
ulation cells extended in the vertical direction. For waveguides etched in semiconductor slabs,
the expansion could also be done in terms of the modes of the unpatterned slab [35] rather than
plane waves. These extensions could further increase the method’s computational speed and
eliminate any coupling between vertically adjacent unit cells. Mode-matching at the top and
bottom of the slab [33, 34] could also be used together with the IDM to determine the radia-
tion modes and radiation losses of planar photonic crystal structures, which directly determine
the quality factor of resonators in such structures. The effect of material loss on the properties
of waveguide modes could be incorporated into the method through complex dielectric con-
stants. Both the plane wave expansion and scattering matrix methods employed in the IDM can
accommodate such absorptive media. The guided mode eigenvalues in Eqs. (9) and (10), with
magnitudes brought below one from the material loss, can be used to determine the propagation
losses of the waveguide modes.

Although we illustrated this method using waveguides, which are among the most common
practical photonic crystal devices, the IDM is not limited to just this class of structures. We
have already used the IDM to simulate the interaction between waveguides and cavities created
from homogeneous defects [17]. By employing the IDM to determine the mode profiles of in-
dividual devices, we could calculate a new class of scattering matrices describing the behaviour
of each device. These matrices could be combined through the approach described in Ref. [36]
to model the scattering between multiple devices, including that between two waveguides or
a waveguide and a cavity. Waveguide bends could be simulated by dividing the device into
two waveguide segments coupled to a resonator joining the segments. The IDM could be ap-
plied to the individual waveguides and to the resonator [16]. Transmission and reflection at
the waveguide bend could then be evaluated by calculating the coupling between these three
elements. We foresee that the IDM could also be used to simulate superprisms and to optimize
emission from photonic crystal waveguides.
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