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A B S T R A C T

Colloidal quantum dots are materials of interest in infrared detection – a consequence of their near-infrared
light harvesting capability, tunable bandgap, and solution-processing. Herein we develop a quantum-dot-
in-perovskite-nanowire consisting of PbS quantum dots embedded inside MAPbI3 nanowires. The kinetics of
perovskite nanowire growth were tracked. We found that N,N-dimethylformamide induced the formation of
perovskite nanowires, and that their growth was accelerated upon PbS quantum dot inclusion. We then
used this nanocomposite to fabricate photodetectors that showed a light response from the visible to near
infrared region up to 940 nm. Finally, a flexible photodetector was fabricated on a polyethylene ter-
ephthalate substrate.

1. Introduction

Infrared (IR) detection is important for technologies such as
night vision, health diagnosis, proximity detection, and time-of-
flight ranging [1–4]. Traditional IR detectors rely on vacuum pro-
cessed materials, such as InGaAs and CdHgTe, which depend on
expensive fabrication process [5,6]. In recent years, solution-pro-
cessed colloidal quantum dots (QDs) have emerged as promising IR
light detecting materials owing to their excellent near-infrared
(NIR) light harvesting capabilities, tunable bandgap, and low cost
[7–10]. The performance of QD based photodetectors was sig-
nificantly improved due to recent achievements in QD surface op-
timization and device structure engineering, e.g. introducing halide
ligands to increase carrier mobility and forming n-type QD films
[11,12], building graded device architectures and Schottky junction
device [13–15].
Organic-inorganic hybrid metal halide perovskites have attracted

attention in optoelectronic devices for their tunable bandgap, solution
processability, and micron-scale exciton diffusion lengths [16–18].
They are ideal matrix materials for transporting carriers into QDs be-
cause (1) perovskites can epitaxially grow on QDs because both mate-
rials share similar crystal lattice constants and (2) the excellent carrier
transporting capabilities of perovskites allow for fast carrier transport
between both materials. Therefore, the combination of perovskites and

QDs present a promising material platform to build IR light emitting
diodes and photodetectors [19,20].
Recently, photodetectors based on one-dimensional perovskite na-

nowires (NWs) have received special attention for their excellent sen-
sitivity and flexibility [21]. Deng et al. fabricated a photodetector with
ultrahigh-responsivity, while Gao et al. prepared a photodetector with
high detectivity and polarization sensitivity from single crystalline
perovskite NWs [22,23]. Moreover, perovskite nanowire photo-
detectors were also fabricated on flexible substrates [24].
Herein, we fabricated MAPbI3 perovskite NWs with embedded PbS

QDs. The MAPbI3 perovskite NWs act as the host transporting material
and PbS QDs as the IR light harvesting material. We studied the influ-
ence of solvents on nanowire growth, and performed characterizations
such as transmission electron microscopy (TEM) and X-ray diffraction
(XRD) to confirm the formation of the nanocomposite structure.
Photodetectors based on this nanocomposite showed photoresponse in
both visible and NIR regions. Finally, as a proof of concept, we de-
monstrate a flexible photodetector using QD-in-perovskite nanowires.

2. Experimental methods

2.1. Materials purchase

Lead oxide yellow (PbO, 99.99%, metals basis), lead iodide
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(PbI2, 98%), oleic acid (OA, AR), 1-octadecene (ODE, > 90%, GC),
n-octane (96%), N, N-dimethylformamide (DMF, 99.5%, AR), n-
butylamine (BTA, 98%, AR), isopropanol (IPA, 99.5%, GC) were
purchased from Aladdin. Hexamethyldisilathiane (TMS, synthesis
grade) was purchased from Aldrich-sigma. Hexane (AR), acetone
(AR), and toluene (AR) were purchased from Sinopharm.
Methylammonium iodide (MAI, 99%) was purchased from
Solarmer.

2.2. Dot-in-nanowire growth

PbS QDs were synthesized by the typical hot injection method
and post treated via halide ligands. The long ligands on the QDs
were exchanged to iodide via solution phase ligand exchange [25].
To prepare the QD-in-perovskite nanowires, 100 mg of PbS QDs
were dissolved in a solution containing 100 mg of PbI2 (with one
quarter weight ratio of MAI) dissolved in butylamine. This solution
was spin coated at 2500 rpm onto a polyethylene terephthalate
(PET) film with gold (Au) contacts followed by annealing at 70 °C for
10 min in ambient conditions (relative humidity ∼50%). Then, the
films were soaked in isopropanol (MAI/DMF/IPA, 60 mg/300 μL/5
mL) for six minutes. Finally, the film was annealed at 70 °C for
10 min.

2.3. Characterization

The optical properties were characterized by a UV–Vis spectrometer
(Cary 5000, Aligent) and a photoluminescence spectrometer
(Fluorolog-3, Horiba). The morphology was measured by scanning
electron microscopy (SEM) (JSM-6010PLUS/LA and JSM-7800F
Prime). X-ray diffraction was measured on a D2 Phaser desktop XRD.
Transmission electron microscope was taken by the FEI Tecnai G2 F20.

The I-V curve and response time were measured with a Keithley 2400
source meter.

3. Results and discussion

PbS QDs with exciton peaks around 950 nm were synthesized via a
hot injection method by using lead oleate and hexamethyldisilathiane
as precursors. The long ligands on the PbS QD surface were exchanged
by iodide ligands, during which PbI2 and MAI dissolved in N, N-di-
methylformamide were mixed with PbS QDs dissolved in octane.
Exchange of halide ligands allows epitaxy growth of perovskite matrix
on them, and short halide ligands facilitates carriers extraction from
QDs to matrix [26].
The dot-in-nanowire nanocomposite was prepared through a two-

step method (Fig. 1d). In the first step, the PbS QDs were dispersed in
butylamine containing PbI2 with one quarter weight ratio of MAI, and
subsequently spin-coated on a substrate. In the second step, the film
was soaked in an IPA/DMF/MAI solution to convert PbI2 into MAPbI3.
PbS QDs play important roles in the growth of NWs by acting as seeds to
induce formation of perovskite nanowires. This is possible because both
materials share similar lattice constants. Without the presence of QDs,
few NWs were grown and bulk perovskites were formed (Fig. 1a–c). The
optimized volume ratio for nanowire growth is 28% QDs: perovskites,
closely matching a previous report [27].
We investigated the effect of nanowire growth with different solvent

compositions. Different ratios of DMF: IPA were studied (Fig. 2a–c).
Increasing the DMF content promotes the formation of the intermediate
structure MAI-PbI2-DMF, which speeds up the growth of NWs [28]. We
tracked the nanowire growth process by SEM. In the beginning, NWs
grew on the film surface since bulk materials were observed on the
bottom. After three minutes, the bulk perovskites disappeared and NWs
formed homogeneously (Fig. 2d–f). The optimized time for nanowire

Fig. 1. The influence of QD ratios on nanowire growth, top-view SEM images of nanowire films with PbS QDs to PbI2 mass ratio as (a) 0:1, (b) 1:5, (c) 1:3, (d)
Schematic of the fabrication process of QD-in-perovskite NWs.
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growth was six minutes. The nanowire morphology was unaffected
when grown on different substrates such as glass, NiO, or PEI films
(Fig. 2g–i).
We then studied the photophysical properties of the prepared

films. Fig. 3a shows the absorption spectra of PbS QD films, MAPbI3
NWs, and QDs in NWs. The dot-in-nanowire film shows characteristic
absorption peaks of both MAPbI3 at ∼780 nm and PbS QDs at
∼950 nm, indicating the presence of both materials. The XRD spec-
trum of QDs in NWs is shown in Fig. 3b. The main diffraction peaks at
14.2°, 20.1°, 23.6°, 24.6°, 31.9°, 35.3° can be ascribed to the (1 1 0),
(1 1 2), (2 1 1), (2 0 2), (2 1 3), (3 1 2) planes of MAPbI3 [29,30], while
the XRD peak at 30.4° is attributed to the (2 0 0) plane of PbS QDs. The
high-resolution transmission electron microscopy (HRTEM) images of

a dot-in-nanowire are shown in Fig. 3(c) and (d). Small black dots with
an inter planar spacing of 0.29 nm derived from the (2 0 0) plane of
PbS QDs were observed (Fig. 3c) [31]. However, no lattice spacing
belonging to MAPbI3 was observed, possibly due to the quick de-
composition of perovskite under electron beam. The inter-plane spa-
cing of 0.39 nm could be attributed to the (0 1 1) plane for PbI2
(JCPDS#73-1286). Energy-dispersive X-ray spectroscopy (EDS) was
employed to verify the composition of dot-in-perovskite NWs by
mapping the element distribution (Fig. 4). Homogeneous distribution
of lead and sulfide elements was found, indicating QDs were well
dispersed in NWs.
The band structure of the composite material is important for

transporting carriers between QDs and perovskite NWs. The iodide

Fig. 2. Top-view SEM images of nanowire films with different DMF volumes (a) 100 μL, (b) 200 μL, (c) 300 μL in a MAI/IPA solution. SEM images showing different
MAI/DMF/IPA soaking times, (d) 1min, (e) 3min, (f) 6min. SEM images showing NW films grown on different substrates (g) glass, (h) NiO film, (i) polyetherimide
(PEI) film. The mass ratio of PbS QDs to PbI2 is 1:1 during nanowire growth.
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capped PbS QDs have a suitable band alignment with MAPbI3 per-
ovskites. The conduction band minimum (CBM) and valence band
maximum (VBM) positions of iodide passivated PbS QDs (λexcition=
∼950 nm) are around −5.5 eV and −4.2 eV, respectively [32]. The
CBM and VBM positions for MAPbI3 perovskites are −5.4 eV and
−3.7 eV, respectively [33]. The higher CBM of perovskites facilitates
electron transfer from perovskites into QDs, while the close VBM values
allows hole transfer between the MAPbI3 perovskites and QDs (Fig. 5d).
However, it should be noted that the interface defects between QDs and
perovskites could impede carriers transport between them [34].
We fabricated photodetectors based on a photoconductor structure

growing NWs on gold contacts with a channel of 50 μm. The I-V curves
tested in dark conditions show a deviation from Ohmic-like behavior at
low voltages, possibly due to the formation of a junction between gold
contacts and perovskite NWs. The current increases continuously with
increasing illumination intensity (640 nm light source). The on/off ratio
is ∼2.5 when the illumination intensity increases to 30 mW (Fig. 5b).
The responsivity is around 1–5mA/W with the bias of −5 V and an
irradiation of 640 nm (Fig. 6c). The small current at μA scale could be
ascribed to the large channel between the contacts. The repeatability
measurement was performed to test the stability of the device, as shown
in Fig. 5c. No obvious photocurrent decay is observed after 10 cycles.
The rise time and decay time extracted from the photocurrent curve
(Fig. 6a) were 79.1ms and 72.7ms, respectively. The relatively slow
response could be ascribed to defects related carrier recombination and
low carrier mobility.
We then measured the performance of the photodetector under IR

illumination. The QD-in-NW device showed a light response when

illuminated with 940 nm light, indicating that carriers generated within
the QDs can transfer to perovskites (Fig. 6b, black curve). However, the
photocurrent was low, which could be ascribed to the interface defects
that impeded the electron transfer. To exclude the influence of the
thermal induced current, a QD free nanowire control device was pre-
pared; no light response with a 940 nm irradiation was observed,
proving the IR response was indeed coming from the QDs (Fig. 6b, red
curve). When there was no bias voltage, the photo-generated carriers
could go through recombination between the QD and perovskite na-
nowire interface. When a moderate bias was applied (10 V), the photo
generated carriers in PbS QDs could transfer along the electric field
(Fig. 5e, f). It was proven that the electron in such a structure could
escape from the QDs to perovskites through a field-assisted Fowler-
Nordheim tunneling mechanism [20]. Photogating due to the accu-
mulation of photocarriers in NWs could be another possible reason for
the photocurrent [35].
In the end, as a proof of concept, a flexible device was fabricated on

a polyethylene terephthalate (PET) substrate. The flexible device
showed photoresponse when bent and the current increased under il-
lumination (Fig. 6d). However, the photocurrent was still low, and
further optimization to improve this device will be investigated in fu-
ture work.

4. Conclusion

In summary, we fabricated a dot-in-wire nanocomposite with PbS
QDs embedded in MAPbI3 perovskite NWs. The use of DMF as a solvent
induced the growth of NWs and the PbS QDs acted as seeds that

Fig. 3. Characterization of nanowires (a) Absorption spectra of PbS QD films, MAPbI3 NWs and QDs in NWs, (b) X-ray diffraction pattern of QDs in NWs film, (c)
Transmission electron microscope of a single nanowire, (d) High resolution image of nanowire (the red section in (c)). The mass ratio of PbS QDs to PbI2 is 1:1 in b, c.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Imaging of a dot-in-nanowire film, (a) Top-view SEM image, EDS mapping images of (b) lead, (c) sulfur, (d) carbon, (e) nitrogen and (f) iodine.

Fig. 5. Device performance illuminated by 640 nm light source, (a) I-V curves, (b) I-t curve, (c) Repeatability of photocurrent, inset is the schematic of the device
structure, (d) Band alignment of dot-in-wire photodetector, (e) flat band state of a single PbS QD, (f) band alignment at a moderate voltage.
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accelerated a uniform nanowire growth. Transmission electron micro-
scopy revealed monodisperse PbS QDs embedded in MAPbI3 NWs.
Photodetectors based on this nanocomposite showed photoresponse in
both visible and IR regions. This work expands the family of nanoma-
terials that can be utilized for IR photodetection.
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