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Chemical space search is a challenging problem, given the large size of the

chemical space and complex structure-property relationship. In this work, we

propose a solution by mapping the task of optimizing material property to that of
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significant time acceleration using a quantum-inspired device. Applying this to

discovery of catalyst, we discover a new stable and efficient quaternary oxide

catalyst for acidic oxygen evolution reaction.
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PROGRESS AND POTENTIAL

Searching the chemical space

exhaustively is difficult because of

its large size and non-convex

structure-property relationship,

preventing discovery of optimal

alloys and doped materials. Here,

we develop a method that maps

the search for materials with

optimal properties to that of

finding the ground state of an

Ising model. This enables the use

of specialized combinatorial

optimization devices such as the

quantum annealers and quantum-

inspired optimizers, resulting in an

efficient and accurate search. We

apply this to the discovery of
SUMMARY

To enable the accelerated discovery of materials with desirable
properties, it is critical to develop accurate and efficient search algo-
rithms. Quantum annealers and similar quantum-inspired optimizers
have the potential to provide accelerated computation for certain
combinatorial optimization challenges. However, they have not
been exploited for materials discovery because of the absence of
compatible optimization mapping methods. Here, by combining
cluster expansion with a quantum-inspired superposition technique,
we lever quantum annealers in chemical space exploration for the
first time. This approach enables us to accelerate the search of
materials with desirable properties 10–50 times faster than genetic
algorithms and bayesian optimizations, with a significant improve-
ment in ground state prediction accuracy. We apply this to the
discovery of acidic oxygen evolution reaction catalysts and find a
promising previously unexplored chemical family of Ru-Cr-Mn-Sb-
O2. The best catalyst shows a mass activity eight times higher than
state-of-the-art RuO2 and maintains performance for 180 h.
acidic oxygen evolution reaction

catalysts and discover a previously

unreported stable and efficient

catalyst demonstrated through in-

laboratory experiments. We

envision that this approach will be

used to further explore diverse

and more complex alloyed

structures that were previously

difficult to explore because of

computational complexity and

that this method will provide a way

to test usefulness of various

computing architectures to

demonstrate computational

advantage.
INTRODUCTION

Finding materials with desirable properties such as high d-band centers, high stability,

high mobilities, optimal bandgaps, or low overpotentials to enable efficient energy

harvesting,1 catalysis,2 light emission,3 sensing,4 and more is a challenging high-order

optimizationproblem. Traditionally, density functional theory (DFT)-based screening5,6

has been used to explore chemical space. However, the high computational cost

associatedwithDFT calculations7 and the vastness of chemical space8make exhaustive

searches infeasible. To predict material properties rapidly, studies in recent years

have employed machine learning (ML)-based surrogate models.9–13 Among them,

approaches based on learning from stoichiometries14,15 and generative models such

as variational autoencoders (VAEs)7,16–18 and generative adversarial networks

(GANs)19–22 allow accurate property prediction without DFT relaxation, which is a

computationally expensive step. However, despite the presence of an accurate ML

model, chemical exploration can still be limited because of the generation of

infeasible structures by generative models, absence of efficient search strategies,

and large chemical space (see Note S1 for an estimate). Therefore, ensuring global

optimization across an exhaustive search within chemical space is difficult with such

methods. This is further complicated by the observation that formulating the chemical

space search as an optimization problem is itself challenging due to the absence of a

simple analytic optimization expression and the non-convex nature of structure-prop-

erty relationships due to the presence of multiple local minima.23,24
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We aim to address this challenge by developing a new method to search chemical

space by reframing the problem as one of finding the Ising Hamiltonian’s ground

state (Figure 1). Our method maps the cluster expansion (CE)25,26 formulation to

an Ising model. This mapping enables potential use of quantum annealers and

quadratic unconstrained binary optimization (QUBO) solvers to perform rapid global

searches in chemical space. We choose a quantum-inspired optimization engine

(Digital Annealer27 [DA]; refer to the methods section ‘‘DA’’ for more details) as

the choice to solve for the ground state of our Ising model. Our choice is inspired

by the fact that DA has been shown to efficiently find ground states of Ising

models.28,29 We term the approach quantum-inspired CE (QCE). When used on its

own, QCE allows us to circumvent the DFT relaxation process and simultaneously

enable us to accelerate the search for materials that optimize target properties of

interest (Figure 1). At the same time, QCE can also be used in conjunction with

superior property prediction models such as interatomic potentials10,30,31 that can

accurately predict the properties to exhaustively search the material space and

find materials with desirable properties.

In this paper, we first detail the QCE method and benchmark it by finding stable

materials in the quaternary Cu-Ni-Pd-Ag chemical system. Following the bench-

mark, we lever the framework to find stable and efficient acidic oxygen evolution re-

action (OER) catalysts by developing an experimentally verified quantummechanical

catalyst efficiency proxy. Finally, we verify our predictions experimentally and our

top catalyst (a never-before-reported multi-metal oxide) demonstrates best-in-class

stability among all acidic rutile OER catalysts with overpotentials <250 mV.
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RESULTS

Mapping CE to Ising Hamiltonian instance

CEs are power series expansions of the partition function that account for many-

body interactions. They have been widely employed for the exploration of mate-

rials.26,32–36 In CE, the desired property P is expressed as a function of the 3D

arrangement of atoms in the lattice. The 3D arrangement of atoms can be mapped

bijectively to a configuration vector s = ½s1; s2;.; sN�where si represents the type of
atom at a specific lattice site i. N is the total number of sites in the lattice. The prop-

erty of interest P is expressed as a function of the vector s:

PðsÞ =
X
f

JfPf ðsÞ (Equation 1)

where Jf is the fitted correlation coefficient and Pf ðsÞ is the correlation function of

multi-body interaction terms s. By expanding the correlation functions in Equation 1,

we get:

PðsÞ =
X

i ˛ cluster 1

Jf CFiðsiÞDf +
X

i;j ˛ cluster 2

Jf CFiðsiÞ,Fj

�
sj

�
Df

+
X

i;j;k ˛ cluster 3

Jf CFiðsiÞ,Fj

�
sj

�
,FkðskÞDf + .

(Equation 2)

where FiðsiÞ is an orthogonal basis function dependent on the atom type . si
35 Terms

cluster_1, cluster_2, and cluster_3 are single-body, two-body, and three-body interac-

tions of a unique cluster of sites. The Jf coefficients are obtainedby fitting theCEon the

DFT-generated data (initial structures and relaxed structure properties)36–38 (Fig-

ure S1B). The CE is an infinite series, but it can be approximated as a finite series.38,39

The key step of our proposed mapping is expressing the basis functions 4iðsiÞ as a
superposition of all basis functions for every site within the lattice:
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Figure 1. Mapping chemical space search to finding the ground state of an Ising model with QCE

Comparison of the Ising model (first column: A), CE (second column: B), and our proposed approach (third column: C). Ising models are computational

models of ferroelectricity. Various optimizers, including quantum annealers, quantum-inspired optimizers, as well as conventional algorithms such as

Metropolis, can be used to find ground state of Ising models. On the other hand, CEs are used for solving the combinatorial search problem in chemical

space, but only conventional algorithms have been used so far for exploring CE. As part of this paper, we propose a mapping (third column of inset table)

from CE to an Ising model. This enables us to lever the same set of optimizers for CE as those are available for finding ground state of Ising models.
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FiðsiÞ =
Xn
j = 1

c
�
Mj

�
$4i

�
si = Mj

�
Xn
j = 1

c
�
Mj

�
= 1

c
�
Mj

�
˛ f0;1gc j

(Equation 3)

such that cðMjÞ is the linear combination coefficient where the summation of the co-

efficients is equal to 1,Mj is one chemical element from the periodic table, and j rep-

resents the index of that element (j = 1.nÞ. It is due to the use of this superposition

with constraints on coefficients that we name our method QCE.
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In this study, we use the encoding cðMjÞ = qj, where qj is a binary variable only ac-

cepting 0 and 1 as the values. Such variables are quite often realized as spins of a

quantum annealer or binary decision variables in quantum-inspired optimizers.

Several other candidate functions can also be used for the encoding scheme cð $Þ
(refer to the methods section ‘‘Encoding schemes for QCE’’ for an in-depth analysis

of alternative encoding schemes). Using the encoding cðMjÞ = qj transforms Equa-

tion 3 as

FiðsiÞ =
Xn
j = 1

qj $4i

�
si = Mj

�
(Equation 4)

Substituting for Fi from Equation 4 in Equation 2 yields an expression with several

multi-body interaction terms (qoq1; q0q1q2; q0q1q3q4; ::). We use term reduction

as reported by Babbush et al.40 to simplify the expression repeatedly until a

QUBO expression is obtained:

P =
XN0

i;j = 1

Aijqiqj (Equation 5)

where Aij are QUBO coefficients that are a function of Jf ;Pf and penalties used for

term reduction. qi is a binary decision variable accepting only 0 or 1 as the value.N0 is
the total number of decision variables including the auxiliary variables used for term

reduction.

The QUBO expression is then transferred to DA for efficient search and finding con-

figurations that have the optimal property (minimum or maximum). Since any QUBO

expression can be mapped to an Ising Hamiltonian, our proposed approach can be

used by any Ising model solver such as a quantum annealer for optimizing materials

within chemical space. This further motivated the term ‘‘QCE.’’ The complete

process is summarized in Figure 1.
Benchmarking our approach through exploration of quaternary chemical

space (Cu-Ni-Ag-Pd)

To benchmark the performance of our proposed approach, we explored the quater-

nary chemical space spanned by Cu-Ni-Ag-Pd in a face-centered cubic (FCC) lattice

due to their potential applications as fuel cell membranes41 and oxygen reduction

electrocatalysts.42 Stability of materials for such applications is critical and is being

extensively investigated.41,43 Thus, finding stable alloys within this chemical space

can be an exciting prospect41,44 (Figure 2A). We use DFT for data generation and

perform structure relaxation on randomly decorated FCC structures, followed by

evaluation of the total energy of the systems. These total energies are then used

to calculate mixing energies ðDHmixÞ, which are used to train a CE model (refer to

the sections ‘‘Data generation’’ and ‘‘Mixing energy ðDHmixÞ’’ for more details) and

use it a measure of alloy’s stability against its single metal constituents. The model

achieves a 10-fold cross-validation mean absolute error (MAE) of 8 meV/atom (Fig-

ure 2B; see methods section ‘‘CE training’’ for more details). We used CE with two-

body and three-body interactions with cutoff radius of 12�A as we found it to be most

accurate in terms of cross-validation mean absolute error.

Using the scheme presented in the previous section, we prepared the QUBO repre-

sentation of our CE model and transferred it to the DA for finding structures with

minimum mixing energy (refer to the methods section ‘‘DA’’ for more details). To

explore the potential of our approach, we sought to determine stable alloys within

the Cu-Ni-Pd chemical subspace. We achieved this by restricting the possible values
4 Matter 6, 1–21, February 1, 2023



Figure 2. Chemical space exploration using proposed mapping

Exploring chemical space with random sampling often ends up with limited exploration. Accurate surrogate models and search algorithms can help us

explore unsampled chemical territories.

(A) The mixing energy landscape in a 2D projection of the chemical space. Red dots correspond to the sampled points and each of the points in this 2D

projection correspond to a chemical structure. The global minimum has not been sampled.

(B) CE predictive accuracy for quaternary alloy composed of Cu-Ni-Pd-Ag (our benchmark materials system).

(C) Performance of our QCE approach using DA against other widely used algorithms. We perform chemical ternary subspace search in Cu-Pd-Ni space.

We observe significant temporal acceleration against genetic algorithms (GAs) and its variant MuPlusLambda in addition to bayesian optimization (BO)

and a commercial optimization solver Gurobi. The ground states found by the different solvers vary with only DA providing the actual ground state

configuration and composition. Refer to section ‘‘methods’’ on benchmark algorithms for details on implementation.
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of the basis function Fi to only include relevant elements in the expansion of Equa-

tion 3 (refer to the methods section ‘‘Chemical subspace search’’ for more details).

Upon performing the search using DA, we obtained equimolar ordered Cu0.5Pd0.5

alloy as the alloy with most negative mixing energy (DHmix = �0.20 eV/atom) in

Cu-Ni-Pd space and, therefore, it is stable (Figure S2). This observation is indepen-

dently supported by a previous report about equimolar FCC Cu-Pd alloy being the

more stable.44

Furthermore, we compared the temporal and efficiency performance of our

approach to other widely used search algorithms in chemistry and material science:

genetic algorithms (GAs) and bayesian optimization (BO). We implement the GAs

through distributed evolutionary algorithms in Python (DEAP) framework45 and

BO using scikit-optimize46 (for exact implementation, please refer to our code).
Matter 6, 1–21, February 1, 2023 5
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We find that our approach when used in combination with the DA significantly out-

performs the alternatives in finding theminimummixing energy structure (Figure 2C;

logarithmic scale). We also observe that our approach results in better quality of

global minima. Even though the energy difference between QCE-based predictions

and best GA-based predictions is 0.03 eV/atom, the ground state structures found

by them are significantly different (Cu0.5Pd0.5 and Cu0.69Pd0.31 respectively) indi-

cating the importance of accurate search algorithms. In addition, when we compare

the results of DA against BO, we observe much worse performance than DA as well

as GA. The final compositions found by BO were much closer to the starting points,

indicating that BO used in our comparisons is more effective in searching for local

optimum than global optimum. All the tests were performed using a 20 core Intel

Xeon 6148 CPU operating at 2.4 GHz. Detailed parameters for all the comparison

algorithms are presented in the methodssection ‘‘Performance benchmark

algorithms.’’
Finding stable and efficient OER materials

To demonstrate the generalizability of our approach, we showcase the discovery

of acidic OER catalysts.47,48 The development of OER catalysts has been the subject

of significant research over the past few years.5,43,49–53 For the alkaline medium,

several stable and efficient OER catalysts have been proposed; however, only a

few stable, efficient, and cost-effective OER catalysts have been reported in litera-

ture for operation in an acidic medium.50,54

High efficiency and high stability are two crucial requirements for a good OER cata-

lyst. Todevelop aquantitativemodel for efficiency of the catalyst candidates, webuilt

upon the d-band model by Hammer and Nørskov55–58 and recent studies about its

interplay with p-band centers.59 We used materials and alloys constructed by

substituting two different prototype structures: ZrO2 (P21/c; monoclinic) and RuO2

(P42/mnm; tetragonal) in our study. We generate slabs to model the catalytic

activities for randomly generated structures (refer to methods section ‘‘Data genera-

tion’’). After performing DFT calculations, we used the adsorption energies to deter-

mine the theoretical overpotentials (refer to Figure S4 formodel of the slabs).Weper-

formed logistic regression on the differential improvement of overpotential; i.e., if

overpotential of one material is smaller than the other (refer to methods section

‘‘Logistic regression analysis’’; Figure 3A).Weobserve that the probability ofmaterial

i having an overpotential smaller thanmaterials j is given by the following expression:

Prob
�
hi <hj

�
=

1

1+ eq

where q = 0:078$
�
Epi

� Epj

�
� 0:165$

�
Edi � Edj

� (Equation 6)

where h represents overpotential and Ep and Ed represent p-band center and

d-band center, respectively.

To further establish the validity of this theoretical analysis, we further conduct several

in-laboratory experiments. Using just the contributions due to band centers, we

achieve a Pearson’s correlation coefficient of 0.67 (p < 0.001) between experimental

overpotentials and theoretical proxy. We also observe that, when combined with

enthalpy of mixing (DHmix per atom), we observe a significant improvement in

predictive power using simple Ridge regression. Inclusion of mixing energy as a

predictor significantly improves 10-fold cross-validation correlation from 0.67 to

0.81 (Figures 3B and 3C; Note S3). This role of mixing energy as a predictor can
6 Matter 6, 1–21, February 1, 2023



Figure 3. Development of an efficiency proxy for OER catalysts and training the CEs

(A) The relationship between electronic structure of the material and its efficiency expressed

through overpotential. We trained a logistic regression-based classifier to assess whether one

material has a larger overpotential than the other (0 if smaller and 1 if larger) and use it to search for

more efficient materials.

(B) We further validate this hypothesis on overpotentials obtained through in-laboratory

experiments as part of this study; when represented as band centers, we are able to cluster the

differences with high accuracy.

(C) How the theoretically calculated d- and p-band centers correlate with experimental

overpotentials. We use the exact coefficients obtained through logistic regression comparison

classifier to perform this analysis.

(D–F) The performance of CE models used for exploration within this study for mixing energies.

(D) Predictions of the bulk structures for [Ru-Cr-Mn-Sb-Ti-V-W-Co]O2.

(E) Performance of CE model in predicting d-band centers of the bulk structures for [Ru-Cr-Mn-Sb-

Ti-V-W-Co]O2.

(F) Performance of CE model in predicting p-band centers of the bulk structures for [Ru-Cr-Mn-Sb-

Ti-V-W-Co]O2.
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be explained as stable catalysts are likely to catalyze the reaction consistently. The

overall expression to predict overpotentials h is expressed as,

hi = K
�
0:046Ep � 0:097Ed � DHmix + C

�
(Equation 7)

where Ep is p-band center, Ed is the d-band center, DHmix is mixing energy in eV/

atom, C is a constant, and K is just a multiplier. The values for the three properties

are not on the same scale and that explains the large variation in the absolute value

of coefficients. For exact values of K and C, please refer to Note S3. We also report

all the collected experimental quantities for the candidates with measurable activity

and acidic stability in Table S3 as a tabular database for future ML explorations and

for reference. In addition, we also used mixing energy DHmix to quantify stability of

an alloy relative to its precursors (i.e., ease of synthesizability of the alloy).

Following the strategy for QCE, we trained CE models (Figure S5; methods section

‘‘CE training’’) and generated the QUBO representations for each of the three prop-

erties, DHmix (HE ), p-band center (Hp), and d-band center (Hd ), using QCE. These

properties were obtained by first performing DFT geometry optimization on the

initial decorated lattices followed by calculation of the converged electronic and

thermodynamic properties. Performing cross-validation analysis to find the optimal

cutoffs, we find that CE models with 4 and 8 �A cutoffs for two-body and three-body

interaction terms lead to the best predictive power. Similarly, for predicting d-band

centers, the highest predictive power is demonstrated by a CE with 12 and 6 �A cut-

offs for two-body and three-body interactions. A CE model that incorporated just

two-body interactions with a cutoff of 4 �A achieved the best predictive power. The

accuracy and performance of each of these models on validation data are shown

in Figures 3D–3F. We defined QUBO for efficiency as,

Heff = 0:046Ep � 0:097Ed � DHmix (Equation 8)

Thus, the problem of finding an efficient and stable OER catalyst transforms into

finding a state that minimizes both Heff and Hstable where Hstable is the QUBO repre-

sentation for mixing energies. We solve this problem by using a heuristic approach

of optimizing the linear combination of the two QUBOs:

Hmixed = l1Hstable + l2Heff (Equation 9)

where l1; l2 ˛ ½0;NÞ (refer to Figure S6 for the effect of parameters l1;l2). Transfer-

ring Hmixed represented as QUBO to DA and performing the optimization result in

candidates that have promising stability as well as efficiency.

We searched for different chemical subspaces within the two prototype structures by

varying the relative weight parameters l1; l2 and chemical subspace of interest (Fig-

ure S7) while adding constraints to ratios of different elements (refer to Figure 4 for a

summary of candidates experimentally tested and Table S1 for a detailed list),

whereas non-zero pairs lead to a balanced trade-off between stability and efficiency

(Figure S6). We also compare this approach with a sequential search (search for sta-

bility followed by efficiency). We find that our heuristic approach outperforms a

sequential search strategy (Note S7). In our searches, we focused on exploring

ternary and quaternary chemical spaces. This choice was motivated by existing

exploration of binary transition metal oxides in the literature5,43 as well as effective-

ness of the sol-gel method of synthesis for multi-metal oxide synthesis.

In the context of the presented QCE method for chemical space search, it is also

worth noting the previous studies by Pedersen et al.60 on usage of BO for catalyst

search. Both the observations made by the authors of that study and our
8 Matter 6, 1–21, February 1, 2023



Figure 4. Experimental screening of electrocatalysts

(A) The mixing energy of all electrocatalyst candidates considered for experiments in this study. The candidates were classified based on the synthesis

outcome: synthesis failed (the electrocatalyst was not produced), synthesized, and pure rutile phase.

(B) Overpotential screening of synthesized electrocatalysts.

(C) The intrinsic activity of electrocatalysts normalized by the electrochemical surface area.

(D) The mass activity of electrocatalysts normalized by the total mass of Ru.

(E and F) (E) XRD and (F) polarization curves (Tafel slope analysis in the inset) of the best electrocatalyst candidate R14-M10-41

(Ru0.58Cr0.25Mn0.083Sb0.083O2) and a baseline RuO2 catalyst.

(G) Chronopotentiometry test of the electrocatalysts sprayed on carbon paper electrodes. In the inset is the accelerated test conducted on the

electrocatalysts drop-casted on carbon paper. The electrocatalyst loading for all samples is 1 mg/cm2. The electrolyte is 0.5 M H2SO4.
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benchmarking experiments indicate that a BO-based search strategy is better suited

to a local optimum search than a global optimum. So, if the question is to find a glob-

ally optimal material, QCE will outperform BO-based approaches. On the other

hand, both BO and QCE with constraints can be used for local optimizations of ma-

terials within the chemical space. With QCE, we can constraint the elemental frac-

tions as inequalities and perform local chemical space search.
Matter 6, 1–21, February 1, 2023 9
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Experimental verification

All of the 49 electrocatalyst candidates in Table S1 were synthesized using sol-gel

synthesis followed by annealing in air for 2 h.61 We observed that some composi-

tions (eight compounds) were not successfully synthesized using the sol-gel method

due to poor promotion of networks in the gel (Figure 4A). The crystal structure of the

synthesized samples was screened using X-ray diffraction (XRD). XRD patterns were

collected and classified into two groups: pure rutile phase (21 compounds) and mul-

tiple-phases groups (20 compounds). One XRD pattern is shown in Figure 4E for

Ru0.58Cr0.25Mn0.08Sb0.08O2 (R14-M10-46) showing characteristic peaks of a rutile

structure similar to a baseline RuO2 catalyst. The XRD peaks are broad, indicating

that our synthesis approach produced nanocrystalline electrocatalysts. Further anal-

ysis of the structure for all electrocatalysts is provided in Table S2. High-resolution

transmission electron microscopy (HR-TEM) and scanning transmission electron mi-

croscopy (STEM) are shown for three samples in Figure S8. The nanoparticles have

an average particle size of�10 nmwith a spherical shape suitable for electrocatalytic

applications. The energy X-ray dispersive spectroscopy (EDS) elemental mapping

shows a homogeneous distribution of elements in the three samples (Figure S9).

The EDS elemental mapping of Ru0.58Cr0.25Mn0.08Sb0.08O2 (R14-M10-46) matches

within 5% error with the nominal composition of the compound (Ru, 59 G 5.9

atom %; Cr, 20G 1.0 atom %; Mn, 9G 0.6 atom%; Sb, 13G 3.4 atom % of the total

metal amount). The electron diffraction rings of the three samples confirm the forma-

tion of a strained rutile structure (Figure S10).

The electrocatalysts were then drop-casted on carbon paper to screen the electro-

chemical performance. The overpotential of the electrocatalysts was measured in

a three-electrode cell using 0.5 M H2SO4 (Figure 4B; Table S3). The experimental

overpotentials matched well with the trend of predicted activity (Figure 3C; Note

S3). We observe a coefficient of determination of 0.71 between our theoretically

derived quantum mechanical proxy and in-laboratory experimental overpotential

of catalyst candidates (p < 0.001). We used the structures as obtained by optimiza-

tion of Equation 9 to model every chemical composition. Furthermore, to compare

the intrinsic activity of the electrocatalysts, we decoupled the morphology effect

from the activity by normalizing the current density by the active electrochemical sur-

face area overpotential instead of the geometric area (Figures 4C and S11). We then

calculated the mass activity of the electrocatalysts normalized by the Ru amount in

the electrocatalyst (Figure 4D). Taking into consideration both measures, we identi-

fied Ru0.58Cr0.25Mn0.09Sb0.08O2 as the most promising candidate with the highest

mass activity 381 A/gRu (about eight times higher than RuO2) and a much lower over-

potential increase rate of 2 mV h�1, 10 times slower than RuO2 (inset in Figure 4G;

Table S3).62 To better assess the stability of the electrocatalyst, we prepared it by

spraying the electrocatalyst on carbon paper instead of drop-casting, the technique

we used for screening purposes, to ensure a higher penetration of the particles

through the hydrophilic carbon paper yielding in higher surface coverage and better

mechanical attachment to the carbon fibers. We maintained the loading of the elec-

trocatalyst between both preparation techniques at 1 mg/cm2. Our candidate main-

tained an overpotential of less than 300 mV for 180 h at a low overpotential increase

rate of 2 mV/h, 10 times lower than RuO2 and any previous reports of rutile structure-

based catalysts.43 Finally, we also search existing databases (OQMD, AFLOW,

Materials Project, OCP, ICSD) and literature for similar alloys and we were unable

to find even a similar oxide compound with Ru, Cr, Mn and Sb present together.

Our QCE method was therefore able to effectively search chemical space, identify

a new promising family of multi-metal oxides for exploration, and discover a highly

efficient and stable OER catalyst.
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We also compared the results with a random sampling of chemical composition

strategy. We observed that five out of eight of our predictions demonstrated an

overpotential of less than 300 mV, and three of them demonstrated an exceptional

stability of less than 10 mV/h overpotential degradation (Table S3). If we had to

randomly sample the chemical space to find at least one of these three composi-

tions, we would need to perform at least �766 experiments in the quaternary chem-

ical space of just a single chemical subspace (see Note S8 for stoichiometric space

size), indicating at least 953 improvement over a random chemical space search

strategy purely based on experiments.

DISCUSSION

Origins of the catalyst stability and efficiency

To better understand the cause of higher activity and stability of our top

catalyst candidate, Ru0.58Cr0.25Mn0.09Sb0.08O2 (henceforth referred to as catalyst

RuCrSbMnO2),weperformeddetailedDFTcalculationsandanalysis.Weused the crystal

structure for each candidate, as obtained by minimizing the joint Hamiltonian in Equa-

tion 9, for performing the following analysis (Figures S12 and S13 for crystal structure

of RuCrMnSbO2 and its XRD comparison to experimental structure). Bader charge anal-

ysis showed that the average partial charge on Ru increased from 1.73|e| in pure RuO2 to

1.82|e| in RuCrMnSbO2. Ru with a higher partial charge indicates improved ability of the

catalyst to oxidize water to oxygen (i.e., OER). Additionally, to explore the origin of the

stability of the catalyst candidates, we further analyzed the density of states (DOS). As

shown in Figures 5A and 5B), incorporation of Cr, Mn, and Sb alter the DOS of RuO2,

causing occupation at Fermi level to decrease from 38 states/spin $ cell to 18 states/

spin $ cell. This decrease in DOS at fermi energy indicates stronger bonding between

metal atoms, leading to stabilization of our solid solution43,63 (see Figure S14 for a com-

parison study that considers only Cr and Mn). Table 1 summarizes our observations

against previously reportedRu0.4Cr0.6O2 andRuO2.
43Wealsoobserve that entropic con-

tributions further stabilize the predicted composition RuCrMnSbO2 compared with pre-

viously reported RuO2 and Ru0.4Cr0.6O2. These observations align with our observed

experimentalmeasurements of 180-h stability for RuCrMnSbO2 comparedwith unstable

RuCrO2 and 40-h stability of pure RuO2 (catalyst ID R8-M16-16 and RuO2 for detailed

experimental results on stability and activity in Tables S1–S3).

At the same time, we calculated free-energy profiles (DGÞ of OER to compare the

activities of RuCrMnSbO2 with RuO2 (refer tomethods section ‘‘Data generation’’ for de-

tails andNotes S5 and S6). As can be seen fromFigure 5 (C andD), the formationofOOH

was found to be the rate-determining step. For RuCrMnSbO2, the Bader charge was

found to be 1.92 eV, which is smaller than the Bader charge corresponding to RuO2

(2.02 eV) and consistent with the experimental observation of smaller overpotentials.

This observation can be explained by the finding that the d-band surface DOS is higher

for RuCrMnSbO2 (7.52 states/spin $ cell) compared with RuO2 (5.30 states/spin $ cell),

leading to the lower overpotential and lower reaction energy barrier to the formation

of adsorbed OOH radical. Presence of larger number of states enables easier electron

transfer and, therefore, facilitates formation of intermediates (*O, *OH, *OOH).64

Conclusions

In this study, we reported a new approach for materials discovery that maps the

chemical space search problem to one of finding the ground state of the Ising Hamil-

tonian. This enables us to use a quantum-inspired computing framework to find ma-

terials with optimal properties in an accelerated and efficient fashion, orders of

magnitude faster than the widely used alternatives, such as GAs and BO. Our efforts

led us to develop an improved efficiency proxy and discover a stable and efficient
Matter 6, 1–21, February 1, 2023 11



Figure 5. Post hoc DFT analysis of the best candidates

(A) Bulk DOS decomposed into elemental contributions and normalized to one for all the constituent elements for RuO2.

(B) Elemental decomposed DOS for bulk RuCrMnSbO2 using the same normalization scale. We observe that the DOS for RuO2 at fermi level is 38 states/

(eV $ spin) larger than 18 states/(eV$ spin) in RuCrMnSbO2, which is an indicator of better chemical bonding.63

(C) Free-energy diagram for OER for RuO2 catalyst.

(D) Free energy diagram for OER with RuCrMnSbO2 catalyst. In both cases, *OOH formation is the rate-determining step (RDS) with hRuO2
> hRuCrMnSbO2

where h represents overpotential.
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OER catalyst Ru0.58Cr0.25Mn0.09Sb0.08O2. Post hoc DFT analysis further explains the

electronic origins of the stability and efficiency of the catalysts.

However, we should also take note of one of the limitations of the current study: re-

striction of one lattice across the chemical space, which is not what is always desired

in materials discovery pipelines. Nevertheless, this can be handled by using

extended CE mapping as proposed by Koretaka Yuge.65 We plan to incorporate

this as part of our future work.
EXPERIMENTAL PROCEDURES
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Table 1. Comparison of different stability contributing factors for RuO2, Ru0.4Cr0.6O2, and RuCrMnSbO2

Compound DHmix (eV/atom) Bader charge on Ru
DOS at Efermi

(states/spin $ cell)
Entropy contribution
at 550 � C (eV/atom)

RuCrMnSbO2 �0.08 1.82 18 �0.078

RuCrO2 �0.05 1.92 19 �0.048

RuO2 0.0 1.73 38 0.000
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Materials availability

This study did not generate new unique reagents.

Data and code availability

All the code and data supporting this study are available at a public Github reposi-

tory: https://github.com/hitarth64/quantum-inspired-cluster-expansion. The repos-

itory contains all the code required to run the searches and data used for bulk peri-

odic systems within the study.

All the slab calculation data are available at: https://github.com/hitarth64/Mixed

MetalOxides.
Methods

DA

Fujitsu’s DA is designed to efficiently solve combinatorial optimization problems27

formulated as fully connected Ising problems expressed in QUBO form. In the

most general case, a QUBO can be represented as Fðq0;q1;.;qnÞ =
P
ij
aijqiqj , where

qi ði = 1.nÞ are binary variables.

In this work, we used a third-generation DA, which can handle up to 100,000 binary de-

cision variables. Given a QUBO expression, the DA finds the assignment of binary vari-

ables (referred by q0;q1;.) such that the expression value is minimized. All experiments

wereconductedon theDAenvironmentprepared for researchuse.Moredetails onexact

algorithms and configuration of DA can be found at: https://www.fujitsu.com/jp/

documents/digitalannealer/researcharticles/DA_WP_EN_20210922.pdf.

Data generation

We use RuO2 (Materials Project66: mp-825) and ZrO2 (Materials Project: mp-2858) as

the prototype structures and generated 72 and 96 atom supercells, respectively, for

training the CE models. Then, 120 randomly substituted alloy structures were

generated for each of the chemical spaces spanned by Ru-Ti-W-Sb-Cr-Mn-V-Co

and Ru-Zr-Hf-Y-V-Co-Fe-Ce. We further randomly selected 34 structures and gener-

ated surfaces with 110 orientations for the calculation of adsorption energies with

vacuum spacing of 10 �A on both sides. We chose 110 orientations since we found

it to bemost stable with respect to surface energy (refer to Note S6). The slabmodels

were composed of 144 atoms (48 metal atoms and 96 oxygen atoms) repeated in

four layers besides the adsorbates (O, OH, and OOH). DFT calculations were per-

formed in Vienna ab initio simulation package (VASP) for the bulk and surface struc-

tures using Perdew-Burke-Ernzerhof67 (PBE) exchange-correlation functional

augmented with Hubbard coulomb interaction potential (U) corrections for d-elec-

trons taken from Materials Project.66 Valance electrons were described with a

520-eV plane-wave basis set and 0.05 eV Gaussian smearing of the electronic den-

sity. All the bulk geometries were optimized with the energy convergence criterion

of 10�4 eV and force convergence of 0.03 eV/ �A. Core electrons were described us-

ing the projector augmented wave (PAW) method. All the calculations were spin

polarized and reciprocal space was simulated using a 3 3 2 3 1 k-points mesh
Matter 6, 1–21, February 1, 2023 13
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centered at gamma. Refer to Note S2 for a detailed evaluation of the computational

costs associated with a single calculation.

For Cu-Pd-Ni-Ag chemical space benchmark, we used Cu-FCC 64 atoms supercell as

the prototype structure, and 120 randomly decorated structures were generated.

DFT calculations were performed in VASP for the bulk using Perdew-Burke-Ernzerhof67

(PBE) exchange-correlation functional. Valance electrons were describedwith a 520-eV

plane-wave basis set and 0.05 eV Gaussian smearing of the electronic density. All the

geometries were optimizedwith the energy convergence criterion of 10�4 eV and force

convergence of 10�3 eV/A. Core electrons were described using the PAWmethod.

To perform post hoc DFT analysis of the RuO2 and RuCrMnSbO2, we generated sur-

faces with orientations [001, 100, 101, 110] and choose 110 as the orientation to

perform adsorption energy calculations due to lower energy (Note S5). The post

hoc DFT analysis was done on a k-points grid 3 3 2 3 1 with 520 eV as the energy

cutoff for the PAW pseudopotentials and strongly constrained and appropriately

normed (SCAN) exchange-correlation functional was used with the Hubbard-U

correction. The rest of the parameters stayed the same as in the preceding

paragraph.

Mixing energy ðDHmixÞ
We define mixing energy or enthalpy of mixing DHmix as excess energy with respect

to the single metal precursors. For metal alloys it assumes the form

DHmix

�
AxByCzDw

�
= E

�
AxByCzDw

� � x$EðAuÞ+ y$EðBuÞ+ z$EðCuÞ+w$EðDwÞ
u

where u = x + y + z +w and Eð $Þ represents total energy of the concerned phase.

Similarly, for mixed metal oxides, it assumes the form

DHmix

�
AxByCzDwOv

�
= E

�
AxByCzDwOv

�
� x$EðAuOvÞ+ y$EðBuOvÞ+ z$EðCuOvÞ+w$EðDwOvÞ

u

where u = x + y + z +w.

CE training

We used integrated cluster expansion toolkit (ICET) to train CE models.37,68 The

scripts and codes are available at https://github.com/hitarth64/quantum-inspired-

cluster-expansion. We tested different cluster generation schemes by tuning the

kind of interactions and cutoff for each of the interactions (see Figure S5 for a com-

parison plot). Parameters that lead to the lowest cross-validation error were chosen

for analysis.

Encoding schemes for QCE

Several candidate functions can be used for the encoding scheme Cð $Þ. Two natural

choices are as follows:

� Encoding 1:

FiðsiÞ =
Xn

qj$4i

�
si = Mj

�

j = 1
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where qj are binary decision variables and the one-hot constraint of Equation 3 is

then enforced as a penalty:

PiðsiÞ =

 Xn
i = 1

qi � 1

!2

� Encoding 2:

FiðsiÞ =
Xn

fj
�
q1;q2;.qk

�
$4i

�
si = Mj

�

j = 1

where qj are binary decision variables, k = ceil(log2 n) where n is total number of

element types. Functionsfjð $Þ’s are defined such that only one fjð $Þ is non-zero

and others are zero for any q!˛ f0;1gk and each fjð $Þ is one at leas for one q!˛
f0;1gk : Here are the steps to construct such fj . First, for each possible bit string in

the space f0;1gk , construct a polynomial that takes one only for the bit string and

zero for other bit strings. Next, determine a surjection from the bit strings to element

indices {1 .. n}. Finally, define fj as the sum of the polynomials correspond to bit

strings that mapped to the element j in the previously defined surjection. Such an

encoding scheme trivially enforces the one-hot constraint of Equation 3 and there-

fore, we do not need to add it as a penalty. For a three elements system example,

the bit strings and the corresponding polynomials are {0,0} and ð1 � q1Þð1 � q2Þ,
{0,1} and ð1 � q1Þq2, {1,0} and q1ð1 � q2Þ, and {1,1} and q1q2. An instance of surjec-

tion is f0; 0g11, f0;1g12;f1; 0g13;f1; 1g13. In this case, f1 = ð1 � q1Þð1 � q2Þ,
f2 = ð1 � q1Þq2, f3 = q1ð1 � q2Þ+q1q2 = q1.

Performance benchmark algorithms

We performed comparison against four heuristic search algorithms that are widely

used in chemistry and material science. Their implementation details are as follows:

� GA: GA is implemented using the DEAP framework.45 We use eaSimple algo-

rithm with 300 generations and a population size of 300 to run and perform the

searches. We use crossover and mutation probabilities of 0.3 and 0.7.

� GAMuPlusLambda: this search method uses ðm + lÞ evolutionary algorithm to

perform the chemical space search using eaMuPlusLambda implementation

as provided in DEAP. We use 300 generations and a population size of 300

with crossover and mutation probabilities the same as above. Corresponding

m and l parameters that yielded the optimal solution were found to be 300

and 400.

� BO: we conducted BO-based searches to search and optimize the alloy combi-

nations using scikit-optimize.46 We specifically used Gaussian processes com-

bined with a hybrid acquisition function that randomly chooses either lower

confidence bound (LCB), expected improvement (EI), or probability of

improvement (PI) at every iteration.

� Gurobi: we used commercial Gurobi 9.5.2 solver69 and solved the chemical

space optimization as a quadratic integer program. Gurobi is available free

of charge for academic purposes.

The exact values are tabulated in Table 2.

Chemical subspace search

For performing QCE, we know from Equation 3 that we rewrite the CE formulation as
Matter 6, 1–21, February 1, 2023 15



Table 2. Parameters of the different search algorithms used within the study (empty spaces correspond to absence of corresponding parameter in

an algorithm)

Method
Global optimal
solution (eV/atom) Ground state Time (s) Generation

Population
size BO iterations

Iteration of
saturation Parameters

eaSimple �0.181 Cu0.69Pd0.31 604 300 300 300

DA �0.200432 Cu0.5Pd0.5 80

eaMuPlusLambda �0.169 Cu0.65Pd0.35 1021 300 300 277 mu = 300,
lambda_ = 400

Bayesian
optimization

�0.1421 Cu0.7Ni0.04Pd0.26 3600 528 222

Gurobi �0.0742 20774
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FiðsiÞ =
Xn
j = 1

C
�
Mj

�
$4i

�
si = Mj

�

such that Mj; j = 1.n represent the set of elements being considered for the site

i and

C
�
Mj

�
˛ f0; 1gc jXn � �
j = 1

C Mj = 1

In order to restrict the sampling to a set of elements, we limit the summation to set of

elements of interest to us. If one wants to avoid elementMs, one can rewrite the sum-

mation as,

FiðsiÞ =
Xn

j = 1; jss

C
�
Mj

�
$4i

�
si = Mj

�

Such that CðMjÞ˛ f0; 1gc j

Xn
j = 1

C
�
Mj

�
= 1

OER mechanism

OER in acidic and neutral medium is a four-step reaction with the following reaction

mechanism5,43,50:

�+H2O4OH� +
�
H� + e� 1

�
� � �

+ � 1
�

OH 4O + H + e
� � �

+ � 1
�

O + H2O 4OOH + H + e
� � � � 1

�

OOH 4 � +O2 + H + e

where � denotes the species adsorbed at the catalyst surface.

The theoretical overpotential ðhOERÞ is thus defined as

hOER = max
ðDG7; DG8;DG9;DG10Þ

e
� 1:23 V

maxðDG � ;DG � � DG � ;DG � � DG � ; 4:92 � DG � Þ

=

OH O OH OOH O OOH

e
� 1:23 V

Calculation of hOER , thus, requires values of adsorption energies for reaction inter-

mediates O; OH, and OOH. These DFT energy calculations are computationally

expensive. Usually, scaling relationships are used to reduce the number of calcula-

tions needed.47 However, scaling relationships break down in the case of alloys.

Therefore, here, we perform explicit DFT calculations for all three adsorbate

structures, *O, *OH, and *OOH, along with bare surface to calculate the adsorption
16 Matter 6, 1–21, February 1, 2023
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energies. These adsorption energies along with zero point energies and entropic

corrections are then used to calculate DGOH� , DGO� , and DGOOH� as

DGO� = EDFT ðO�Þ � EDFT ð � Þ � EDFT ðOÞ � EZPEðOÞ+ TDSðOÞ
DG � = E ðOH�Þ � E ð � Þ � E ðOHÞ � E ðOHÞ+TDSðOHÞ
OH DFT DFT DFT ZPE

DG � = E ðOOH�Þ � E ð � Þ � E ðOOHÞ � E ðOOHÞ+TDSðOOHÞ
OOH DFT DFT DFT ZPE

Furthermore, to overcome the limitation of traditional GGA-based calculations for

O2 molecule, its free energy is calculated as

GðO2Þ = 4:92+ 2GðH2OÞ � 2GðH2Þ ðin eVÞ

Calculation of band centers

D-bandmodel relates the surface reactivity with the shifts in the d-band center of the

catalyst where the d-band center is a single state with energy ed that approximates

the interaction of participating bands of d-states. In particular, we calculated d-band

centers and p-band centers using the first moments as

eM�d =

RN

�N
EDM�dðE � EFÞ dERN

�N
DM�dðE � EFÞ dE

(Equation 10)RN
eM�p = �N
EDM�pðE � EFÞ dERN

�N
DM�pðE � EFÞ dE

(Equation 11)

where M is the corresponding element andDM� y represents partial DOS of orbital y

of element M in the system.

Logistic regression analysis

We used logistic regression, as implemented in scikit-learn, to investigate the

relationship between band centers and overpotentials of the materials. We first

calculated theoretical overpotentials (section ‘‘OER mechanism’’) of 34 randomly

chosen candidate materials from the two chemical families under consideration

(section ‘‘Data generation’’). We trained the classifier to distinguish the differential

improvement between two catalysts; i.e., trained to predict whether hi < hj (overpo-

tential of material i is less than that of material j). In addition, refer to Figure S3 to see

the variation in intermediate adsorption energies as a function of band centers.

Materials

Metal precursors including ruthenium chloride hydrate (RuCl3$xH2O), chromium(iii)

chloride anhydrous, 99.99% trace metals basis (CrCl2), manganese chloride

(MnCl2), tungsten (VI) chloride (WCl6), titanium diisopropoxide bis(acetylacetonate),

75 wt % in isopropanol, vanadium(iii) chloride (VCl3), and propylene oxide (R99.5%

GC) were all purchased from Sigma-Aldrich. Nafion (5 wt % in a mixture of lower

aliphatic alcohols and water) and AvCarb MGL190 were used for electrode prepara-

tion. All chemicals were used without any further purification.

Experimental synthesis

The mixed metal oxides were synthesized using a modified sol-gel procedure61 by

completely dissolving a total amount of 2.7 mmol of the metal precursor mixture

in 3.5 mL of anhydrous ethanol. The solution was vortexed for 5 min and sonicated

in a water bath for 1 h until it was clear. Then, it was chilled in a refrigerator for 2 h to

prevent any undesired hydrolysis and condensation, which may affect the gelation

process. Afterward, a magnetic stirrer was used to mix the solution vigorously while

2 mL of propylene oxide was added dropwise to the mixture. The solution was aged

for 1 day to promote gel formation and then washed with acetone; the process was

repeated for 5 days before drying the gel in a vacuum oven for 1 day. The sol-gel
Matter 6, 1–21, February 1, 2023 17
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process produces amorphous oxides; therefore, to produce a rutile crystal structure,

the dried powder was annealed at 400�C for 2 h.

For fast electrochemical purposes, the working electrode was prepared on

0.5 3 0.5-cm untreated carbon paper (AvCarb MGL190) by drop-casting. First, a

catalyst ink was prepared by mixing 10 mg of the catalyst in 1 mL of a mixture of wa-

ter and ethanol (4:1, v/v). Then, the ink was sonicated in an ice bath for 1 h. Finally, a

25-mL drop of the ink was deposited on the carbon paper and allowed to dry in the

air. For final electrochemical testing, the working electrode was prepared by spray-

ing the electrocatalyst using N2 on 0.5 3 0.5-cm untreated carbon paper. The ink

was prepared by mixing 10 mg of the catalyst in 1 mL of isopropanol. Then, the

ink solution was sonicated in an ice bath for 1 h before spraying it on the carbon

paper on the hot plate at 90�C.

Electrochemical testing

Electrochemical testing was conducted in a three-electrode setup using a

Hg/Hg2SO4 as the reference electrode and graphite rod as the counter electrode.

The OER activity was evaluated by running linear sweep voltammetry (LSV) with a

rate of 5 mV/s. The stability of the catalyst was evaluated by conducting chronopo-

tentiometry at 10 mA/cm2.

All potentials were iR-corrected by measuring the solution resistance from electro-

chemical impedance spectroscopy (EIS) with a bias of 1.53 V vs. reversible hydrogen

electrode (RHE) in the frequency range from 100 kHz to 10 MHz and an amplitude of

5 mV. All the potentials in this study were reported with respect to an RHE using the

following relationship:

ERHE = EHg=Hg2SO4
+ 0:640+ 0:05913pH

Structure analysis

The crystal structure of catalysts was determined using X-ray diffraction (XRD). A

Miniflex 600 (Rigaku, Japan) equipped with D/tex Ultra silicon trip detector and

Cu Ka radiation (l = 1.5418 Å) was used. Powders were prepared by mixing with

acetone and then dropping a small drop of the mixture to fill a 4-mm-diameter by

100-mm-deep groove in a single crystal silicon holder (zero-background). The angle

was varied between 20� and 80� with a step size of 0.005� and a scan rate of 1�/min.

To evaluate the nanocrystalline size and macrostrain of the electrocatalysts, we used

Scherrer’s equation and microstrain equation:

D =
Kl

FWHM cos q
; Scherrer0s equation

FWHM

ε =

4 tan q
; microstrain

D is the mean crystallite size, l is 0.154 nm for Cu X-ray source, K is shape factor and

has a typical value between 0.9 and 1. The full-width half-maximum (FWHM) of the

peaks were measured by fitting to Gaussian distribution and then calculated from

the standard deviation (s) using the following relation:

FWHM = 2
ffiffiffiffiffiffiffiffiffiffiffi
2:ln2

p
z2:355 s

Electron microscopy

The structural characterization and elemental mapping of the catalysts were done

using high-resolution scanning electron microscopy (HRSEM) and TEM. The exper-

iments were conducted in a Hitachi HF3300 equipped with a cold field emission
18 Matter 6, 1–21, February 1, 2023
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electron gun using an accelerating voltage of 300 kV. An EDS detector was used in

STEM mode to analyze and quantify the composition of the nanoparticles. Also, a

secondary electron (SE) detector was used to collect HRSEM images of the nanopar-

ticles. Powder samples were prepared in ethanol and sonicated for 10 min before

drop-casting a 1- to 2-mL drop on a 400-mesh copper grid and drying overnight.
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V.A., Banko, L., Arenz, M., Savan, A., et al.
(2021). Bayesian optimization of high-entropy
alloy compositions for electrocatalytic oxygen
reduction. Angew. Chem. Int. Ed. Engl. 60,
24144–24152. https://doi.org/10.1002/ANIE.
202108116.

61. Zhang, B., Zheng, X., Voznyy, O., Comin, R.,
Bajdich, M., Garcı́a-Melchor, M., Han, L., Xu, J.,
Liu, M., Zheng, L., et al. (2016). Homogeneously
dispersed, multimetal oxygen-evolving
catalysts. Science 352, 333–337. https://doi.
org/10.1126/science.aaf1525.
62. Wen, Y., Chen, P., Wang, L., Li, S., Wang, Z.,
Abed, J., Mao, X., Min, Y., Dinh, C.T., Luna,
P.D., et al. (2021). Stabilizing highly active Ru
sites by suppressing lattice oxygen
participation in acidic water oxidation. J. Am.
Chem. Soc. 143, 6482–6490. https://doi.org/10.
1021/jacs.1c00384.

63. Sorantin, P.I., and Schwarz, K. (2002). Chemical
bonding in rutile-type compounds. Inorg.
Chem. 31, 567–576. https://doi.org/10.1021/
IC00030A009.

64. Wang, X., Yang, M., Feng, W., Qiao, L., An, X.,
Kong, Q., Liu, X., Wang, Y., Liu, Y., Li, T., et al.
(2021). Significantly enhanced oxygen
evolution reaction performance by tuning
surface states of Co through Cumodification in
alloy structure 903. 115823. https://doi.org/10.
1016/J.JELECHEM.2021.115823.

65. Yuge, K. (2012). Modeling configurational
energetics on multiple lattices through
extended cluster expansion. Phys. Rev. B 85.
144105. https://doi.org/10.1103/PHYSREVB.
85.144105/FIGURES/5/MEDIUM.

66. Jain, A., Ong, S.P., Hautier, G., Chen, W.,
Richards, W.D., Dacek, S., Cholia, S., Gunter,
D., Skinner, D., Ceder, G., and Persson, K.A.
(2013). Commentary: the materials project:
a materials genome approach to
accelerating materials innovation. Apl.
Mater. 1. 011002. https://doi.org/10.1063/1.
4812323.

67. Perdew, J.P., Burke, K., and Ernzerhof, M.
(1996). Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868.
https://doi.org/10.1103/PhysRevLett.77.3865.
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