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Abstract—We analyze the optical signal processing functionality
of periodic structures consisting of alternating layers of materials
possessing opposite Kerr nonlinearities. By elaborating an analyt-
ical model and employing numerical simulations, we explore the
performance of proposed passive optical limiters and switches. We
prove that the proposed limiters provide true limiting by clamping
the transmitted intensity at a level which is independent of the in-
cident intensity. We explore the response of optical switches for
signal and pump beams having the same and different frequencies.
We describe and quantify the performance of the proposed struc-
tures in the realization of all-optical OR gates and optical hard-lim-
iters. In addition, we prove that, for fabrication errors as large as
10%, qualitative device functionality remains, with performance
only modestly degraded.

Index Terms—Electromagnetic scattering by periodic struc-
tures, optical limiters, optical propagation in nonlinear media,
optical signal processing, optical switches.

I. INTRODUCTION

OPTICAL limiters and switches provide a prospective basis
for optical signal processing [1]–[10]. They can be used to

filter, shape, and multiplex optical pulses and to limit the optical
power [5]. Devices based on optical limiting and switching find
application in ultrahigh-speed networks [11] and in specialized
high-speed processors such as data and signal regenerators and
encryptors [5]. Passive optical limiters are also commonly used
as protective devices [12]–[15].

Ideally, the limiter should have a transmittance equal to one
for low-intensity radiation. The transmittance should decrease
with increasing intensity to the point that the transmitted inten-
sity is clamped at a maximum acceptable level [16].

Depending on the application, passive optical limiters and
switches are required to be either broad-band or narrowly spec-
trally discriminating. It is often desirable, especially in wave-
length division multiplexing (WDM) systems, for a device to
act only on a limited spectral range of light. It is then necessary
that the limiter or switch should not affect the transmittance of
the rest of the spectrum. On the other hand, since the spectral
diversity of lasers in use is increasing, fixed-line spectral fil-
ters cannot offer complete protection of the optical components
[12]. Thus, in the case of sensor protection, broad-band limiting
is required.

A reliable optical limiter or switch must be resistant to op-
tical damage [12], [17]. The nonlinear material responsible for

Manuscript received September 22, 1999; revised January 12, 2000.
The authors are with the Department of Electrical and Computer Engineering,

University of Toronto, Toronto, ON M5S 1A4, Canada.
Publisher Item Identifier S 0018-9197(00)03536-3.

limiting or switching action must not degrade when subjected
to the high-intensity light on which it is operating. Additionally,
the limiter or switch should be stable in the working environ-
ment. Thus, it should attach firmly to the sensor it is to protect
and not be affected by motion [12].

Among the most commonly used passive optical limiters and
switches are devices based on total internal reflection, self-fo-
cusing, self-defocusing, two-photon absorption, and photore-
fractive beam fanning [13], [14], [17]–[19]. Devices based on
total internal reflection are very sensitive to alignment [17].
Self-focusing and two-photon absorption rely on the absorp-
tion of the incoming radiation and, as such, are vulnerable to
damage of the nonlinear material [13], [14], [17], [19]. In self-
defocusing limiters, only part of the transverse cross section of
the light beam or pulse is transmitted. This leads to an output
signal with a different transverse intensity profile than the in-
cident pulse, which is often undesirable in optical signal pro-
cessing [17]. In photorefractive beam fanning, the transmitted
beam may lose its spatial and temporal coherence. In addition,
high intensity weakens the photorefractive abilities of all known
materials [17].

Given the vast usefulness of passive optical limiters and
switches in optical signal processing and the inadequacy of the
presently available solutions, we propose herein a technique
that fulfills simultaneously each of the requirements described
above. In this work, we explore the basic mechanisms of our
approach and describe its applications.

The devices we model in this work rely upon the mechanism
of nonlinear reflection rather than absorption of light. They are
much less susceptible to damage than absorption-based devices.
Since the proposed limiters and switches are composed of multi-
layer structures, they are relatively easy to fabricate into any de-
sired shape or to attach to any kind or form of surface. Once at-
tached, such devices will not be affected by motion of the sensor
they are protecting. The limiters and switches we propose can
be designed to be either highly wavelength-selective or to ex-
hibit their properties over a broad range of wavelengths.

We provide herein the solutions to coupled-mode equations
for the case of a one-dimensional (1-D) periodic medium illu-
minated with radiation at resonance. The medium is composed
of layers with an identical linear refractive index and alternating
opposite Kerr coefficients. We have obtained analytical expres-
sions which aid us in obtaining physical insight into device oper-
ation and allow us to relate the response of the device to its struc-
tural and material parameters (average refractive index, Kerr co-
efficient, and number of periods). We have investigated poten-
tial uses in optical signal processing of the proposed limiters and
switches.
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Fig. 1. Structures consisting of2N alternating layers of materials with an
identical linear refractive index and opposite Kerr coefficients.

We have restricted our analysis in this work to the case
of a 1-D periodic nonlinear model system. A vast array of
further device opportunities arise in the context of periodic
three-dimensional (3-D) media. Such structures have already
been realized through techniques of mesoscopic self-organ-
ization both in inorganic [20] and organic [21] materials.
Either system lends itself to the selective inclusion of materials
with fast Kerr-type nonlinearities of opposite signs. Limiters
which are angularly as well as spectrally broad-band can be
realized in these regular media. Signal-processing elements
rooted not simply in 1-D nonlinear distributed reflection, but
implementing nonlinear diffraction of signals—mediated by
the set of available reciprocal photonic lattice vectors—can be
envisioned.

II. THEORETICAL MODEL

The structures analyzed are shown in Fig. 1. They consist
of alternating layers of materials, each one possessing a Kerr
nonlinearity. The index of refraction of such a material can be
expressed as [22], [23]

n = n0 + nnlI (1)

wheren0 is the linear part,nnl is the nonlinear intensity-depen-
dent part, andI is the local intensity of light in the medium.
The coefficientnnl can be either positive or negative [3], [24].
Thus, depending on the sign ofnnl, the index of refraction of
the given material can either increase or decrease as the inten-
sity is increased. We analyze structures whose layer thicknesses
are chosen to achieve the quarter-wave condition for an average
index of refraction of 1.5 at frequency 3�1014 Hz (�0 = 1 �m).

In order to obtain an analytical expression for the evolution of
forward and backward propagating waves inside the structure,
we use the coupled-mode formalism for the case of a nonlinear

periodic medium [23], [25]. Applying these equations to our
structures, we obtained coupled-mode equations under the fol-
lowing conditions: negligible absorption, the same linear index
of refraction of the two materials, and opposite nonlinear Kerr
coefficients:
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whereA1 andA2 are the coefficients of the forward and back-
ward propagating waves, respectively,! is the frequency of the
radiation,c is the speed of light in vacuum,k is the wavenumber
of light, and� is the period of the grating. We have employed
the slowly varying envelope approximation [22] in obtaining (2)
and (3).

We solve at resonance(2!n0=c = 2�=�) (2) and (3) for
A1(z) andA2(z) with the help ofMathematica. Two boundary
conditions were specified, both at positionz = L, whereL is
the length of the structure:A2(L) = 0, i.e., that no radiation is
incident on the structure from the right; andA(L) = A1out. We
obtain (4), shown at the bottom of the page, for the envelope of
the forward-propagating wave in terms of the transmitted inten-
sity (Iout = jA1outj

2).
Taking the squared modulus of (4) yields the following ex-

pression for the evolution of the intensity of the forward-propa-
gating wave across the structure:

I(z) =

��������
1 + cos

�
4Ioutnnl(L � z)

�n0

�

2 cos

�
4Ioutnnl(L � z)

�n0

�
��������
Iout: (5)

Solving (5) forz = 0 gives the following relation between
the transmitted and incident intensity:
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wherea = n0=Nnnl andN = L=� is the number of periods.
Equation (5) givesIin as a periodic function ofIout. Only

solutions from the first period of this function are physically
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Fig. 2. (a) Limiting behavior of the proposed structures. This semi-logarithmic
graph shows transmitted intensity as a function of incident intensity for structure
with nnl = j0:01j for various numbers of periods. This plot illustrates the
transition between low and high incident intensities as well as the saturation to
a limiting value. Transmittance of the signal beam decreases with the increasing
pump intensity and eventually approaches zero for high values ofIpump. (b) A
linear plot response for small values of incident intensity. All of the devices
clamp the transmitted intensity to a limiting value.

possible—the remaining solutions imply a transmitted inten-
sity larger than the incident intensity. The limiting value ofIout
therefore occurs when

ILimiting =
�

8

n0
Nnnl

: (7)

As our numerical results (discussed below) confirm, (7) gives
the highest value of the intensity that can escape the far side of
the limiter. The result constitutes an analytical proof of true, or
ideal, limiting action: transmitted intensity can be guaranteed
to lie below a sensor-safe value for arbitrarily intense incident
radiation.

III. RESULTS AND DISCUSSION

With the help of analytical formulas presented above and
numerical solutions of to coupled equations (2) and (3), we
proceed to explore potential uses of the proposed structures
in optical signal processing. We propose all-optical limiters,
switches,OR gates, and optical hard-limiters based on our
generic structure. We present elsewhere [26] an in-depth ex-
planation of the physical processes responsible for the limiting
behavior of the proposed devices.

In Fig. 2, we show on linear and semi-logarithmic plots the
transmitted intensity as a function of incident intensity for var-
ious numbers of periods. The structures analyzed are made of
materials with the linear index of refraction of 1.5 and opposite

Kerr coefficients of magnitude 0.01. These graphs were based
on (6). Here and in the rest of this paper, we use normalized in-
tensity in units reciprocal to those ofnnl. The incident light was
assumed to be resonant with the periodicity of the structure. In
these plots, the transmitted intensity is seen to approach asymp-
totically a specific value determined by structural parameters.
The value to which the intensity saturates is given by (7). This
feature of true optical limiting is desired of passive optical lim-
iters [16].

A figure of merit for the limiters is the Dynamic Range (DR).
This quantity is defined as the ratio of the low-intensity trans-
mission (TL) to the high-intensity transmission (TH ), measured
at the highest energies employed (DR= TL=TH ) [16]. The an-
alytical expressions derived predict the transmission of the pro-
posed structures to approach zero as the incident intensity is suf-
ficiently increased. Thus, there is no theoretical limit to the DR
of our devices.

Realization of the proposed limiters using materials having
opposite Kerr characteristics ensures saturation of the trans-
mitted intensity to the limiting value. The center of the stopband
is then fixed at the desired frequency, regardless of the inci-
dent intensity. Otherwise, a multilayer structure may display
multistability [1], [27]–[32]. In contrast with the structures
proposed herein, multistable structures generally do not exhibit
saturation of the transmitted intensity to limiting value and may
undergo chaotic behavior [28].

In an optical switch, the increasing intensity of the pump
beam is used to lower the transmittance seen by a signal beam
[6]. In order to distinguish the pump and signal beam at the
output of the structure, it may be desirable to use beams of
different frequencies. To analyze such cases, we use numerical
simulation.

We show in Fig. 3(a) and (b) the results of these simulations.
In both (a) and (b), the structures analyzed have refractive in-
dices as in Fig. 2. We consider a signal beam having on-reso-
nance frequency 3�1014 Hz. The low-intensity signal does not
perturb the characteristics of the grating. The frequency of the
pump beam is varied from 2.8�1014 Hz to 3.2�1014 Hz. In
Fig. 6, we keep the number of periods constant at 50 and obtain
transmittance spectra of the signal beam for pump intensities of
1, 2, and 4. In Fig. 7, we keep the pump beam intensity fixed at
1 and vary the number of periods (50, 150, and 250).

It is seen in Fig. 3(a) and (b) that the highest transmittance of
the signal beam occurs when the frequency of the pump beam
approaches the structural resonance of the periodic medium. As
the frequency of the pump beam moves off resonance, the trans-
mittance of the signal beam oscillates, eventually saturating far
from resonance. If the pump beam is far beyond the resonant
frequency, its transmittance is very close to one. The intensity
of the pump beam is then constant throughout the structure; a
flat Bragg grating is formed. Thus, the signal beam, which is
on-resonance with the periodicity of this structure, is substan-
tially blocked.

If, on the other hand, the pump beam is close to resonance,
its intensity decays quickly and the refractive indices of only
the layers at the beginning of the structure are strongly affected;
the signal does not see a strong Bragg grating throughout the
entire structure. The lowest value of the transmittance of the
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(a)

(b)

Fig. 3. (a) Demonstration of switching capability. Transmittance of the signal
beam as a function of the frequency of the pump beam. The structures analyzed
have refractive indices as in Figs. 2–5. The signal beam was assumed to have
an on-resonance frequency of 3�1014 Hz and a constant intensity of 0.1. The
frequency of the pump beam was varied from 2.8�1014 Hz to 3.2�1014 Hz.
The number of periods is kept constant at 50 and the intensity of the signal beam
takes values of 1, 2, and 4. As the intensity of the pump beam is increased, the
transmittance of the signal beam decreases. The transmittance of the signal beam
is maximum when the pump beam is on resonance. (b) Probe beam intensity kept
constant at 1 and number of periods varied (50, 150, and 250).

signal beam takes place at the first minimum of the transmit-
tance spectra. At this point, the intensity of the pump beam in-
side the structure is higher than the incident intensity. This phe-
nomenon is well known in nonlinear Fabry–Perot etalons [30].
In our device, it yields a grating with a stronger effect on the
signal beam than the flat Bragg grating which results form a
pump beam far off the resonance. We plot in Fig. 4 the evolution
of the intensity across the 50-period structure forjnnlj = 0:01,
n0 = 1:5, andIpump = 2. The curves presented correspond to
Ipump at 250 THz (far from resonance), 291.5 THz (at the first
minimum), and 300 THz (structural resonance).

We show in Fig. 5 the transmittance of the signal beam as
a function ofIpump for the same structure as in Fig. 4 for the
same three frequencies. AsIpump is increased, the positions of
the minima shift away from the fundamental maximum. The
effective stopband grows wider and eventually encompasses the
frequencies considered.

Fig. 4. Probe beam intensity across the structure of 50 periods for frequencies
250, 291.5, and 300 THz.

Fig. 5. Transmittance of signal beam as a function of the pump beam intensity.
This plot demonstrates howIpump alters the transmittance of the signal beam
depending on the frequency (250, 291.5, and 300 THz).

The nonlinear distributed Bragg gratings that we propose may
also be used asOR gates or hard-optical limiters. If two beams
are incident on the device and one is of sufficiently high inten-
sity, the transmitted intensity will approach the limiting value
(6). This situation corresponds to the input logic state (0,1) or
(1,0) and an output of 1. If both of the beams are of large inten-
sities, the transmitted intensity will approach theILimiting even
more closely. We illustrate thisOR gate behavior in Fig. 6.

In an optical hard-limiter, the output is constant for input
greater than a threshold value and 0 otherwise [11], [33]. In
order to estimate the quality of the proposed hard-limiters, we
introduce a general expression for the efficiency of hard limiters

� =
IoutjIin=1
ILimiting

: (9)

We plot the efficiency forIin = 1 as a function ofIout in Fig.
6(b). The curve provides a guideline in the design tradeoff be-
tween hard-limiters ideality and output power.



554 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 5, MAY 2000

(a)

(b)

Fig. 6. (a) OR gate. For high intensity, (0,1) and (1,1) input signals result
in nearly the same output. (b) The predicted efficiency of the proposed
hard-limiters as a function of the transmitted intensity forIin = 1.

Fig. 7. Transmitted intensity as a function of incident intensity for the structure
with the same parameters as in Figs. 2 and 3. The thickness of the layers was
allowed to vary 1, 5, and 10% from their quarter-wave value. For 1% deviation
there is no detectable difference in the response of the perturbed device and the
ideal one.

In addition to presenting potential uses of the proposed struc-
tures in signal processing, we analyze the sensitivity of the pro-
posed devices to fabrication errors. We simulate the response of
structures with built-in random fluctuations in the layer thick-
nesses. Keeping all other parameters fixed, we allow the thick-
nesses to be uniformly distributed over a predefined range. In
Fig. 7, we show the transmitted intensity as a function of the
incident intensity for the structure with the same average pa-
rameters as in Figs. 2 and 3. Layer thicknesses were allowed
to vary 1%, 5%, and 10% from their quarter-wave value. For

1% deviation, there is no detectable difference in the responses
of the imperfect device and the ideal device. Even in devices
with a larger degree of imperfection (5% and 10% fluctuations),
the transmitted intensity saturates to some limiting value. Thus,
though the quantitative performance of the device is affected by
the fabrication errors, the device maintains its most important
qualitative function.

IV. CONCLUSIONS

The structures which we have proposed herein are suitable
for realization of devices with applications in optical signal pro-
cessing. We have derived a number of analytical relationships
that describe the response characteristics of the proposed de-
vices in terms of the structural and material parameters. Mate-
rials with large Kerr coefficients and response times on of the
order of picoseconds are available and possess low absorption
coefficients, which justifies a purely dispersive treatment of the
problem [1], [3], [24], [35]–[38]. Aided by the analytical ex-
pressions derived and numerical simulations employed, we have
proven our structures to exhibit true liming behavior. We have
also shown that these structures can be used as optical switches,
OR gates, and hard-optical limiters. Finally, we have demon-
strated that the proposed devices would maintain key qualitative
behavior even with substantial fabrication errors.
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