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We analyze the intensity-dependent optical response of the passive optical limiters realized with distributed-
feedback structures, which consist of alternating layers of materials possessing opposite Kerr nonlinearities.
By elaborating an analytical model and employing numerical simulations, we explore device performance with

respect to key requirements for passive optical-limiter deployment.

We prove that the proposed limiting

mechanism results in complete clamping of transmitted intensity to a sensor-safe limiting value, independent

of incident intensity.

We provide a direct analytical result of this limiting intensity in terms of structural and

material parameters. © 2000 Optical Society of America [S0740-3224(00)00508-7]
OCIS codes: 190.4360, 190.3270, 050.1950, 120.4640, 230.1150.

1. MOTIVATION

Optical limiters are prospective building blocks for a new
family of nonlinear logical elements. Ideally, the limiter
should have a transmittance equal to one for low-
intensity radiation. The transmittance should decrease
with increasing intensity to the point that the transmit-
ted intensity is clamped at a maximum acceptable level.!

Passive optical limiters are commonly used as protec-
tive devices.?® They can be used to protect laboratory
researchers from high-intensity laser radiation,? safe-
guard military personnel from being blinded by the en-
emy light sources, or protect components in the devices
that make use of laser light.> There is also a less sophis-
ticated, but more often encountered, protective use for
passive optical limiters: sunglasses.®” Optical limiters
are also among the elemental building blocks of the opti-
cal logic circuits.®!! They are prospective enablers of op-
tical signal processing, optical sensing, and optical fiber
communications.®1%12

Depending on the application, passive optical limiters
may be required to be broadband or narrowly spectrally
discriminating. Since the spectral diversity of lasers in
use is increasing, the fixed-line spectral filters cannot of-
fer complete protection. At the present time no portion of
the visible band is completely safe;? thus broadband pro-
tection is required. On the other hand, especially for op-
tical signal processing and filtering, it is sometimes desir-
able that only a limited spectral range be blocked owing
to the high intensity of the incoming radiation. It is then
necessary that the limiter be wavelength selective, de-
creasing the transmittance of the unwanted radiation but
not affecting the transmittance of the rest of the spec-
trum.

A reliable optical limiter must also be resistant to opti-
cal damage.>!* The nonlinear material that is respon-
sible for limiting must not degrade when subjected to the
high-intensity light that it is intended to block or clamp.
Additionally, the limiter should be stable in the working
environment. Thus it should be attached firmly to the
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sensor it is supposed to protect and not be affected by
motion.? Since, especially in the protection of laboratory
and military personnel, harmful radiation can be ex-
pected to come from any possible angle, the good limiter
should not be angularly selective. Such characteristics
cannot be expected from the one- and two-dimensional
structures. Thus three-dimensional materials should be
used that exhibit limiting characteristics in all directions
and for arbitrary polarization.

Among most commonly used passive optical limiters
are devices based on self-focusing, two-photon absorption,
total internal reflection, self-defocusing, and photorefrac-
tive beam fanning.>*14716  Self-focusing and two-photon
absorption rely on the absorption of the incoming radia-
tion and as such are vulnerable to the damage of the non-
linear material >*'%1®  Devices based on total internal
reflection are very sensitive to alignment.!* In self-
defocusing limiters, only part of the transverse cross sec-
tion of the light beam or pulse is transmitted. This leads
to an output signal with a different transverse intensity
profile than the incident pulse has.* In the photorefrac-
tive beam fanning the transmitted beam may lose its spa-
tial and temporal coherence. In addition, high intensity
weakens the photorefractive abilities of all known
materials.!4

2. APPROACH

Given the great need for good passive optical limiters, and
the inadequacy of the presently available solutions, we
propose herein a technique that fulfills the requirements
described above. In this work we explore the basic
mechanisms of our approach.

The limiters we model in this work rely upon the
mechanism of nonlinear reflection rather than absorption
of light. In effect, they are much less susceptible to dam-
age than the absorption-based approach. Additionally,
the proposed limiters are composed of multilayer struc-
tures, which makes them relatively easy to fabricate into
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any desired shape or to attach to any kind or form of sur-
face. Once attached, such devices will not be affected by
motion of the sensor they are protecting. The limiters we
propose can be designed to be either highly wavelength
selective or to display their limiting properties over a
broad range of wavelengths.

In order to facilitate design, we solved the coupled-
mode equations for the general case of a one-
dimensionally periodically nonlinear medium illuminated
with radiation at resonance. The medium is composed of
layers with identical linear refractive indices and alter-
nating opposite Kerr coefficients. We have obtained ana-
lytical expressions that give rapid physical insight and re-
late the response of the limiter to its parameters (average
refractive index, Kerr coefficient, and number of layers).
We corroborate this model using comprehensive and self-
consistent numerical simulations. We have investigated
the transmittance characteristics of the proposed limit-
ers. During the analysis we varied such parameters as
number of layers, incident intensity, the frequency of the
radiation, and the strength of the nonlinear response of
the optically active materials.

The presented concept of a one-dimensional limiter can
be used to predict the behavior of the three-dimensional
devices, made of the materials that possess the true pho-
tonic bandgap in all directions.!” The structures that
posses periodicity in all directions have previously been
demonstrated experimentally. The three-dimensional
PBG materials made of self-organizing structures are es-
pecially attractive owing to their relative ease of
fabrication.’®!® Such three-dimensional devices would
exhibit all of the most desired limiter characteristics, in-
cluding being alignment independent.

3. THEORY AND METHOD

The analyzed structures consisted of alternating layers of
two different materials, each possessing Kerr nonlinear-
ity. The index of refraction of such materials can be ex-
pressed as?0?!

(D

where n is the linear part, n,; is Kerr coefficient, and I is
the intensity of light in the medium. The coefficient n;
can be either positive or negative.?? Thus, depending on
the sign of n,;, the index of refraction of the given mate-
rial can either increase or decrease as the intensity is var-
ied. This fact is very important to the feasibility of the
proposed limiters.

The modeling was done using the transfer matrix
method?®?* adapted to the case of nonlinear
materials.?> 27 The relation between the coefficients « of
the forward-propagating wave and b of the backward-
propagating wave in layers j and j + 1 may be
written?32* as

n=ny+nyl,

. kji1 ,
exp(ikjit;,1)| 1 + A exp(—ikj 1tj11)| 1 —
Clj _ J
bj . kj1 .
exp(ik;i1t;11)| 1 — k. exp(—ikji1tji1)
J
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in which 2 = [27(ny + nyl)]/\ is the propagation con-
stant, the intensity is given by I = |a,|? + |b,|?, \ is the
wavelength of the light, and ¢ is the layer thickness. We
designate the matrix-relating layers jandj + 1 by M, ,4;
thus the electric field at the beginning of the multilayer
structure is related to the field at the far end by

Qo

bo

an

= All X A42 X ... 0

X My X , (3)

where N is the total number of layers. The last b coeffi-
cient is 0 since there is no reflection from the semi-infinite
space extending behind the structure. In our modeling
we have assumed a value of ay and worked backward
through the structure in order to determine the incident
intensity necessary to give rise to this ap. This ap-
proach is much more computationally efficient and accu-
rate than working forward. In order to achieve a high
degree of accuracy we have divided each layer into ten
virtual sublayers. The numerical simulations consisted
of several iterations. To zeroth order the index of refrac-
tion in a given layer was assumed to change according to
the intensity in the adjacent layer. Repeated iterations
of Born approximations were carried out. In the consecu-
tive iterations the index of refraction was modified ac-
cording to the intensity present in the relevant layer
rather than in the adjacent one. This procedure was per-
formed until convergence to within 0.1% of the previous
iteration was obtained.

In order to obtain an analytical expression for the evo-
lution of forward and backward propagating waves inside
the structure, we applied the coupled-mode formalism?%4
to the case of our nonlinear periodic medium in the slowly
varying envelope approximation.?’ We have assumed
absorption to be negligible:

1+
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where A, and A, are the coefficients of the forward- and
backward-propagating waves, respectively, o is the fre-
quency of the radiation. ¢ is the speed of light in
vacuum. I(z) = |A1(2)|2 + |Ay(2)|?, E is the wave
number of the light, and A is the period of the grating.

npdi + nedy naudy + npeds
no=——— > MmT—— >

A A
are average linear and nonlinear refractive indices, with
d; and dy being the thicknesses of the layers of first and
second materials. In obtaining analytical and numerical
solutions two boundary conditions were specified:
Ay(L) = 0, which stipulates no radiation incident on the
structure from the right, and A(L) = A{yy-

For the special case of matched linear indices (7¢;
= ngy), opposite Kerr coefficients (ny,; = —nqe = ny,
i, = 0), and equal layer thicknesses (d; = d5), Eqgs. (2)
and (3) reduce to

dA,(2) w 2ny A2
P [1A1(2)]
20ny 2w
+ |A5(2)|*]A5(2)exp i( - _)Z )
c A
(6)
dA2(Z) w 2nnl
dz = - [|Al(2)|2 + |A2(2)|2]A1(2)9Xp
c
[ ,(2“”10 2
-1 puniaihre z|. (7

We solve at resonance (2wny/c = 27/A) Egs. (6) and
(7) for A{(z) and Ay(z). We obtain the following expres-
sion for the envelope of the forward-propagating wave in
terms of the transmitted intensity (I, = |A1u/?):

_4i10utnnl(L - Z)
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Taking the squared modulus of Eq. (8) yields the expres-
sion for the evolution of the intensity across the structure:
4Ioutnnl(L - Z)
Ano
4Ioutnnl(L - Z)

1 + cos

i(z) = Iout' 9)

2 cos

g

Solving Eq. (9) for z = 0 yields the following relation
between the transmitted and the incident intensity:

1 1
Iin:_

E— -~ 10
2 41, out (10)
COoS

a

wherea = 2nq/Nnyand N = 2L/A is the number of lay-
ers.

Equation (10) gives I;, as a periodic function of 7.
Only solutions from the first band of this function (41,,;/a
ranges from 0 to #/2) are physically possible; the remain-
ing solutions imply a transmitted intensity larger than
the incident intensity. The limiting value of I, occurs
when

m™ Ny
I'imiting = 1 N_ﬂm. (11)
As our numerical results obtained in Section 4 confirm,
expression (11) gives the highest value of the intensity
that can escape the far side of the limiter. The result
constitutes an analytical proof of true, or ideal, limiting
action: transmitted intensity can be guaranteed to lie
below a sensor-safe value for arbitrarily intense incident

radiation.

4. RESULTS AND DISCUSSION

Figure 1 and 2 best demonstrate the complete limiting be-
havior of the modeled structures. The indices of refrac-
tion of these two materials were, respectively, n; = 1.5
+ 0.01/ and ny = 1.5 — 0.011. The incident intensity
was increased from 0 to 100. Here and throughout this
work, normalized intensity is plotted in units that are re-
ciprocal to those of n,;. The response of the limiter was
investigated for various numbers of layers. In all cases
the thicknesses of the layers were given the values corre-
sponding to a quarter-wave structure for an index of re-
fraction of 1.5, for a frequency of 3 X 10 Hz (),
= 1 pum).

For very low incident intensities the transmitted inten-
sity is equal to the incident one. As the incident inten-
sity is increased, the transmitted intensity begins to roll
off, eventually saturating at the limiting value. This last

_Siloutnnl(L - Z)

1/2
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A ( ) P Ano P Ano
z) =
! =8il,ynu(L — 2)
2 + 2 exp
Ano
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Fig. 1. Transmitted intensity as a function of incident intensity
for structure with |ny| = 0.01 for various numbers of layers.
All of the limiters clamp the transmitted intensity to a limiting

value.
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Fig. 2. Transmitted intensity is plotted as a function of incident
intensity on a semi-log scale for structures with |n,; = 0.01 for
different numbers of layers. This plot illustrates the transition
section between low and high incident intensities and the satu-
ration to a limiting value.

feature is most desired from the optical limiter. We show
in Figs. 1 and 2 how the value of the limiting intensity de-
creases with increasing numbers of layers. Thus, given a
pair of materials with opposite nonlinear coefficients, one
only needs to choose an appropriate number of layers,
which satisfies the requirement of a specific limiting in-
tensity. It is also very promising that the limiter does
not need to have a very large number of layers in order to
display an asymptotic behavior. As equation (11) proves,
structures with any number of layers exhibit true optical
limiting.

The response described above can be understood intu-
itively from a physical point of view. For very low inten-
sity the indices of refraction of the two materials are
matched. Thus the structure is transparent to the in-
coming light, and the transmittance is very close to 1.
Increasing intensity causes the indices to change, which
in effect blocks some of the light, leading to decreased
transmitted intensity. As the incident intensity is in-
creased further, the nonlinear part of the indices of re-
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fraction becomes comparable to its nonlinear part. Then,
depending on the sign of n,;, the index of refraction in-
creases or decreases linearly with intensity. This causes
the saturation at a given limiting intensity. Very impor-
tant is the fact that the two materials have opposite Kerr
characteristics. This keeps the center of the stopband at
a desired frequency. In cases when only one material is
nonlinearly active, a multilayer structure may display
multistability.?®=32 Then, for some incident intensities
there would be two or more possible transmitted intensi-
ties, which is a feature undesirable in optical limiters. In
contrast with the family of limiters proposed herein, mul-
tistable structures do not necessarily exhibit saturation of
the transmitted intensity to the limiting value and may
exhibit chaotic behavior.?’

We show in Fig. 3 the evolution of the refractive index
across a structure made of 300 layers illuminated by nor-
malized incident intensity equal to 1. The indices of re-
fraction of materials and the thicknesses of the layers are
the same as in Figs. 1 and 3. The incident light is chosen
to have a frequency that is resonant with the structural
periodicity. This plot can be used to track the decay of
the intensity as the light penetrates the limiter. The
first few layers experience almost all of the incident inten-
sity, whereas the last ones see only a fraction of it. The
index contrast at the beginning of the structure is much
greater than at the end. The longer the structure, the
more the indices of the last layers would approach the
value of the average index n.

We display in Figs. 4 and 5 the transmittance spectra.
Figure 4 shows the spectra for the same systems as in
Figs. 1 and 2 for various numbers of layers. The sym-
metric stopband always stays at the desired frequency,
which is a very significant characteristic of a limiter. As
mentioned before, such behavior is caused by the opposite
nonlinear properties of the two materials. Also, as the
number of the layers in the structure is increased, the
stopband gets deeper and sharper. We show in Fig. 5 the
spectra for 300 layers with n,; = =0.01 for incident inten-
sities of 0.5, 1, and 3. This plot again illustrates the lim-
iting behavior. As the strength of the incident intensity
is increased, the transmittance decreases, and the width
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Fig. 3. Indices of refraction are plotted across the structure of
300 layers with |ny| = 0.01. The decay of the intensity across
the structure is thus demonstrated.
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Fig. 4. Evolution of transmittance spectra for structures with
|n| = 0.01 with increasing number of layers is shown. The
nonlinear behavior of the limiter is responsible for the formation
of a stopband at the desired frequency.
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Fig. 5. Plot demonstrates the evolution of the transmittance
spectra made of 300 layers with |n,| = 0.01 as a function of in-
creased incident intensity. As the incident intensity is in-
creased, the stopband becomes deeper and wider.
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Fig. 6. Values of limiting intensities are plotted as a function of
the number of layers for n; values of +0.005, +£0.01, and +0.02.
The values obtained from numerical calculations, shown on the
plot as squares, triangles, and diamonds, follow exactly the
curves predicted by the analytical model.
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of the stopband gets larger. Increasing the incident in-
tensity has the same effect as increasing the value of n,
since it is the product of those two, which changes the re-
fractive index.

We show in Fig. 6 the critical intensities for structures
illuminated using light at the center of the stopband, as a
function of the number of layers for |n,| values of 0.005,
0.01, and 0.02. The curves obtained from Eq. (11) were
plotted for the same cases. The points obtained from the
numerical simulations appear in the predicted places on
these curves. Thus the highest possible intensity that
will be transmitted by a given structure is inversely pro-
portional to the nonlinear strength n; and number of lay-
ers N, but directly proportional to n,, the average index
of refraction of the two materials used.

Low-threshold implementations of the devices explored
herein will rely on the use of materials with large Kerr
nonlinearities. Recently, highly nonlinear materials
have been reported with n, ranging from
1 X 10 °ecm?/W to as high as 1 X 10 6 cm?/'W with re-
sponse times of picoseconds or better.!®?3735 A 1-mm-
long limiter operating on 0.532-um light would, using
these materials, achieve a limiting intensity of
1 X 108 W/em? to as low as 1 X 10> W/em?. These inten-
sities are many orders of magnitude lower than reported
for reverse saturable absorption-based limiters of the
same length and operating at the same wavelength.
These typically require incident intensity of the order of
0.1 GW/em? and do not show full clamping of the trans-
mitted intensity.3638

5. CONCLUSIONS

Aided by an analytical model and numerical simulations,
we have analyzed the response of limiters that address all
the key requirements of their field. Our devices are
based on multilayer structures composed of materials
with opposite nonlinear Kerr coefficients. Such limiters
exhibit the key properties desired of ideal optical limiters.
The transmitted intensity is clamped at a certain value.
Knowing the maximum safe value for a given case, the
limiter can be accordingly designed owing to the derived
relationship between the limiting intensity and the pa-
rameters of the structure. The limiters that we have
modeled rely on the reflection rather than absorption,
which makes them much less susceptible to damage by
high intensity. The extension of the one-dimensional de-
sign to three-dimensional structures can be an origin of
ideal, alignment-insensitive passive optical limiters.
Once created, such devices would have countless uses in
sensor protection and optical logic.
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