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Nonlinear Disordered Media for Broad-Band
Optical Limiting

Lukasz Brzozowski and Edward H. Sargent

Abstract—We analyze broad-band limiting behavior in non-
linear structures that are, on average, periodic. Introduction of
a controlled degree of randomness in layer thicknesses results in
widening of the stopband. Light at all of the frequencies in this
broadened effective stopband of the structure with randomly per-
turbed layer thicknesses exhibits true optical limiting—clamping
of the transmitted intensity below a fixed level independent
of incident intensity. We explore the impact of the degree of
randomization and the strength of the nonlinear mechanism on
the smoothness and regularity of the limiting spectrum and on
the localization of the light within these cyclostationary media.
Optical limiting in integrable devices is of interest in optical logic,
signal processing, and personnel and sensor protection.

Index Terms—Author, please supply index terms. E-mail key-
words@ieee.org for info.

I. INTRODUCTION

PROPAGATION of light through media, which are on
average periodic, but which exhibit some disorder, has

been studied extensively in recent years [1]–[11]. Localization
of photons, analogous with Anderson localization of electrons,
has received special attention [1], [2], [7], [8].

The introduction of optical nonlinearity into such systems
dramatically alters their response [9]–[11]. In the linear case,
the intensity is described by exponential decay. The localization
(characteristic) length is related to the average period and the
transmittance of a unit cell [7], [11]. In the case of a nonlinear
medium, the decay is much slower. The intensity envelope de-
cays not faster than , or even as for the case of strong
nonlinearity and disorder present [9]–[11].

In this paper, we explore the propagation of light in disordered
nonlinear media in the context of a particularly promising and
important application: broad-band optical limiting.

We have previously presented a method for constructing
all-optical limiters based on perfectly ordered nonlinear peri-
odic structures [12]–[14]. These optically stable devices exhibit
true optical limiting by clamping the transmitted intensity to a
sensor-safe level. We have argued that our reflection-based ap-
proach should not suffer from such limitations as vulnerability
to material damage or loss of the coherence of the transmitted
signal. These problems occur in absorption-, self-defocusing-,
or photorefractive-based mechanisms [15]–[17]. Extension of
our approach to three-dimensionally periodic photonic crystals
will result in angularly independent optical limiting.
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In this paper, we investigate how the introduction of disorder
widens the effective stopband of the structure. Increasing
disorder produces transmittance spikes within the effective
bandgap—a phenomenon associated with the creation of defect
states inside an otherwise ordered medium. Such behavior is
undesirable in broad-band optical limiters.

The principle of superposition that applies in linear structures
no longer applies in nonlinear media. Extending structure length
will, therefore, not address the problem of local transmittance
maxima. The old maxima may vanish but new maxima will ap-
pear. In order to counteract this problem, we propose fabricating
composite structures in which a number of shorter structures are
separated by absorbing optical isolators, which eliminate cou-
pling between adjacent units via backward-propagating waves.
Since each unit is, in general, different, it will have transmittance
maxima at different frequency. For a large number of units, no
transmittance maxima are present.

We study the localization of light within a number of struc-
tures. We observe light trapping with increasing incident inten-
sity. We also explore the dependence of the strength of localiza-
tion on the degree of disorder.

II. THEORETICAL MODEL

The structures analyzed are shown in Fig. 1. They consist of
alternating layers of materials, each one possessing a Kerr non-
linearity. The index of refraction of a Kerr materials is expressed
as

(1)

where
linear part;
Kerr coefficient;
local intensity of light in the medium.

The coefficient can be either positive or negative [18]. Thus,
depending on the sign of , the index of refraction of the given
material can either increase or decrease as the intensity is in-
creased. We analyze structures whose average layer thicknesses
are chosen to achieve the quarter-wave condition for the av-
erage index of refraction of 1.5 at a frequency of
Hz ( m). The thicknesses of the individual layers

are allowed to vary uniformly from their average value
within a specified range

(2)

In order to obtain an analytical expression for the evolution of
forward- and backward-propagating field envelopes inside the
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Fig. 1. Structures that are periodic on average and in which the magnitude of the Kerr nonlinearity is constant throughout and alternates in sign from layer to
layer.

structure, we express the electric field at positionwithin the
structure as

(3)

where
and the coefficients of the forward- and backward-

propagating waves, respectively;

frequency of the radiation;

speed of light in vacuum.

We then modify the coupled mode formalism [19] for the
case of a nonlinear periodic medium. We obtain coupled mode
equations describing index-matching of the two materials

(4)

(5)

where , specifies the Kerr
coefficient at (Fig. 1), and is the absorption coefficient. In
order to counteract multistability [14], we have restricted our
analysis to the case of structures in which, in adjacent layers,
Kerr coefficients are of the same magnitude but opposite sign.

is the average nonlinear index computed individually for
each simulation according to the expression

(6)

where is the length of the structure. We have employed the
slowly varying envelope approximation [19] in obtaining (4)
and (5). Two boundary conditions were specified, both at po-
sition , i.e., no radiation is incident on the
structure from the right and , the assumed trans-
mitted field. We take to be a real number. This is justified
by invariance of the system under the global gauge transforma-
tion [20].

III. RESULTS AND DISCUSSION

A. Spectral Analysis

We show in Fig. 2 the transmittance spectra of the perfectly
ordered structures. The symmetric stopband remains fixed at the
desired frequency. This behavior is a consequence of our use of
materials with Kerr coefficients of identical magnitude but op-
posite sign. Throughout our analysis, we refer to the center an-
gular frequency of the ordered structure as. As the number
of layers is increased, the stopband grows sharper and deeper
[Fig. 2(a)]. In Fig. 2(b), we show that increasing incident inten-
sity widens the stopband. This can be understood via analogy
to the linear structures where the width of the stopband is pro-
portional to the index contrast [19]. Since, in the structures an-
alyzed, Kerr indexes of the two materials used are of opposite
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(a)

(b)

Fig. 2. Transmittance spectra of the ordered structures. The structures
analyzed have linear index of refraction 1.5 and (n = �n = 0:002).
(a) Impact of number of layers for incident intensity fixed at 1.5. (b) Impact of
incident intensity for number of layers fixed at 1000.

sign, increasing incident intensity increases the nonlinear index
contrast.

We have provided an in-depth physical analysis of the ordered
multilayer limiting structures elsewhere [12], [13]. In this work,
we concentrate instead on imperfectly ordered systems.

We show in Fig. 3 the effect of introducing disorder. The
structures analyzed consisted of 1000 layers and had a linear
index of 1.5, and the magnitude of the Kerr indexes

. We have taken the system to be illuminated with nor-
malized intensity of one (units reciprocal to those of). The
individual layer thicknesses were distributed uniformly within
1%, 7%, and 10% of the quarter-wave value. The spectral width
on which a given structure acts increases with the degree of dis-
order. For a 1% deviation, the transmittance spectrum is very
similar to the unperturbed response. For a 7% percent devia-
tion, most of the limiting strength is still concentrated close to
the center of the unperturbed stopband. Increasing the degree of
randomness to 10% spreads the effective stopband over a much
wider range.

Two distinct features are quite general.

1) Increased disorder, which widens the stopband, degrades
the depth of the stopband. Randomly varying layer thick-
ness decreases the availability of wavevectors for which
the Bragg condition is satisfied at a given optical fre-

Fig. 3. Influence of increased layer thickness randomization on nonlinear
transmittance spectra.

quency. A larger range of frequencies experiences some
degree of backscattering. The strength of this backscat-
tering is proportional to the number of coherent scat-
terers and the proximity of the individual layers to the
quarter-wave value. A randomized system with a fixed
number of layers will, therefore, have a smaller number
of strongly backscattering regions than the ordered one.

2) The introduction of randomness makes it possible for a
particular frequency of light at a specific intensity to see
a high transmittance even if it lies within the new, wider
effective stopband (Fig. 3). For a randomized system,
there is a possibility of obtaining a phase difference of
close to between the incident and reflected waves. In
this case, constructive interference between forward- and
backward-propagating waves results in a transmittance
spike. Such behavior—associated with photonic defect
states—is not be observed within the stopband of an or-
dered structure made up of materials with opposite Kerr
coefficients.

The detailed transmittance spectra of structures with randomly
varying layer thicknesses depend on the details of random thick-
ness fluctuations. It is not sufficient to specify statistical prop-
erties of the structure and materials: the details of a particular
random trial will determine the detailed spectrum and, in partic-
ular, the location of any transmittance maxima within the former
stopband. We illustrate this effect in Fig. 3. The more the given
structures are randomized, the less closely their responses re-
semble one another from trial to trial. We shall exploit this fact
to design a broad-band optical limiter with no transmittance
maxima within the effective stopband.

In Fig. 4, we propose inserting optical isolators, which ab-
sorb only in the reverse (leftward) direction, between sections
of limiters. Because the principle of superposition does not
apply in nonlinear structures—thus,structures each made up
of layers differ in their response from a single ( )-layer
stucture—combining the limiters without the isolators will not
eliminate local transmittance maxima within the stopband.
The maxima of the individual units may disappear from the
transmittance spectra, but new features originating from the
combined nonlinear distributed feedback structure will appear.

We plot in Fig. 5 the transmittance spectra of a limiter made
up of increasing numbers of 1000-layer units with 10% random-
ness, , and , illuminated with an inten-
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Fig. 4. A combined system consisting of broad-band optical limiters coupled using absorbing optical isolators. Decoupling among the constituent limiters
eliminates transmittance maxima within the effective stopband.

Fig. 5. Combining randomized units in series eliminates transmittance
maxima and deepens and widens the band.

Fig. 6. Comparison of transmission spectra for a single 1000-layer structure
(thin line) versus five combined randomized 200-layer units (thick line).

sity of three. The 1000-layer units are separated by optical iso-
lators. In the many-unit system with isolators, the transmittance
maxima that are present in the shorter systems are eliminated.
A wide stopband with no undesired transmittance maxima is
formed.

We compare in Fig. 6 the transmittance spectra of two 1000-
layer structures: a combined system of five 7% randomized 200-
layer units and a 1000-layer ordered system. The system with
isolators acts on a much wider range of frequencies.

B. Intensity Analysis

We now demonstrate that the randomized systems exhibit true
limiting behavior: they clamp the transmitted intensity below a
fixed level, which does not depend on incident intensity. This
behavior is highly desirable in sensor and personnel protec-
tion and in strongly nonlinear signal-processing operations, in-
cluding all-optical logic [13].

We show in Fig. 7(a) the transmitted versus incident intensity
for a structure of 100 layers with for various de-

grees of randomness. The frequency of the optical signal lies at
the center of the stopband. All of the structures exhibit satura-
tion to a limiting intensity. The stronger the randomization, the
higher the limiting intensity. However, true limiting behavior is
preserved even in the presence of a high degree of randomness.
As we have shown previously in [12], [13], the choice of Kerr
indexes of opposite sign and comparable magnitude is essential
in order to preserve this limiting behavior. The structure would
otherwise exhibit multistability.

In order for the broad-band limiter to be effective, it must
display limiting behavior over its entire stopband. Since the
width of the stopband is proportional to the index contrast,
and in the structures analyzed, index contrast is proportional
to , it is necessary to fix the incident intensity in comparing
the broad-band characteristics of ordered and randomized
structures.

We display in Fig. 7(b) the transmitted versus incident in-
tensity for a 100-layer, , 10% randomized struc-
ture at various frequencies. Even without optical isolators, the
structures behave like limiters. However, unless a structure em-
ploying optical isolators is used, there is a possibility that light
at a particular frequency will only see limiting at a much higher
intensity than the rest of the effective stopband (560 THz in
Fig. 7). Such behavior manifests itself with resonance spikes
present in the transmittance spectra for a range of. Intro-
ducing isolators ensures that the structures exhibit limiting be-
havior over the entire stopband (i.e., no resonance spikes), and
at intermediate frequencies.

We compare in Fig. 8 the transmittance ( ) as
a function of incident intensity for the structure of Fig. 7(b)
and an ordered 100-layer unit. Near (565 THz), ordered
and disordered structures start to display limiting properties at
comparable incident intensity. For the off-center frequencies
(585 THz), randomized structures begin to display limiting be-
havior at lower intensities. This confirms that, at a particular
the effective broadband is larger for disordered structures.

C. Localization of Light

We show in Fig. 9 the evolution of the intensity associated
with the forward-propagating wave across a 100-layer structure
with , illuminated with an intensity of two. These
structures involve no isolators. As the degree of randomization
is increased, the forward-propagating wave experiences weaker
attenuation—its localization length increases and the limiting
strength decreases. For high degrees of disorder (20% and 30%),
light exhibits localization.

We illustrate in Fig. 10 the localization of light within the 30%
randomized structure for various values of incident intensity. As
the incident intensity is increased, a nonlinear grating is formed
and light becomes trapped within the structure. However, as
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(a)

(b)

Fig. 7. (a) Transmitted versus incident intensity for various degrees of
randomness at various trials. (b) Transmitted versus incident intensity for
frequencies over the broadened stopband of a 10% randomized 100-layer
structure.

Fig. 8. Transmittance versus incident intensity. Comparison between ordered
and 10% randomized 100-layer structures at two frequencies.

is evident from a comparison of the curves corresponding to
and , for high incident intensity the trans-

mitted intensity is constant. This confirms the limiting behavior
of these structures.

As discussed and demonstrated in Section III-A, introducing
disorder may result in certain waves having high transmittance,
regardless of whether these waves lie within the stopband of the

Fig. 9. Evolution of the intensity of the forward propagating wave across the
structure. Impact of the increasing level of randomness.

Fig. 10. Intensity of forward propagating wave across a structure consisting
of five randomized 500-layer units. The insert shows transmittance spectra for
one and five units.

Fig. 11. Intensity across the structure in the transmitting and limiting regimes.

original, ordered structure. We illustrate in Figs. 11 and 12 how
the use of optical isolators eliminates this problem.

We show in Fig. 11 the evolution of the intensity associated
with the forward-propagating wave in the limiting and transmit-
ting states. We consider a 7%-randomized, 500-layer structure
with . Within the limiting domain (562 THz), the
intensity decays across the structure. When the transmittance
maximum is reached (561.2 THz), a spatial soliton is formed.
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Fig. 12. Intensity of forward propagating wave across a structure consisting
of five randomized 500-layer units. The insert shows transmittance spectra for
one and five units.

We plot in Fig. 12 the evolution of the forward-propagating
intensity across a structure consisting of four units separated
by isolators. The degree of randomization and the structural
and material parameters are the same as in Fig. 12. For inci-
dent intensity and frequency 561.2 THz, light is
fully transmitted by the first unit. On its own, this first segment
does not provide limiting, but, instead, possesses a transmittance
spike for this particular choice of incident wave. The combined
system, however, serves as an excellent limiter in view of iso-
lator-based removal of backward feedback.

IV. CONCLUSIONS

We have analyzed broad-band optical limiting in disordered
nonlinear structures that are periodic on average. The structures
exhibit localization of light over a spectral bandwidth related to
both the incident intensity and the degree of disorder. We have
shown that even highly disordered structures exhibit true optical
limiting over a spectral range much greater than the limiting
bandwidth of perfectly periodic nonlinear media.

Extension of the proposed one-dimensional (1-D) systems to
three-dimensional (3-D) nonlinear periodic structures will yield
limiters that provide full protection against incident radiation
for an arbitrary intensity, angle of incidence, and optical wave-
length. By opening up further spatial degrees of freedom, 3-D
structures will add the element of intensity-tunable optical non-
linear diffraction to the 1-D transmission and reflection effects
explored in this work. Future work will also include the appli-
cation of analytical statistical methods based on the analysis of
cyclostationarity to generalization of the properties of partially
disordered nonlinear media.
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