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Photonic crystal heterostructures: Waveguiding phenomena and methods of solution
in an envelope function picture
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We present an envelope approximation formalism to study three-dimensional photonic crystal heterostruc-
tures which only requires knowledge of the bulk crystal band structure and heterostructure design. Applying
this method to photonic crystal waveguides, we predict within 1% accuracy the frequencies of guided modes
and obtain the correct waveguided mode shapes. We show that guided modes are allowed for wave vectors
where the curvature of a band in a direction perpendicular to the plane of the waveguide has the same sign as
the refractive index contrast between the core and the cladding. We show that elementary waveguide theory
can be employed to compute mode shapes and dispersion relations.
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[. INTRODUCTION turbed periodic lattices. By applying the results of Wanfter,
Slater showed that in the presence of a slowly varying per-

Photonic crystals have been the subject of intense theoretdrbation of the latticeSV, the envelopel (r) of the electron
ical work over the past decade, marked by the developmenvave function obeys the Schdimger-like equation
of plane-wave techniques adapted to periodic structures,
transfer matrix methodsand different types of numerical [Eo( =i V)+6V(r)JW(r)=EW(r), 1)
schemes to solve Maxwell's equatioh§he computation of . ] )
the band structure of photonic crystals is now a well-WhereE is the energy of the electron arith(—i% V) is the
established process, both in two- and three-dimension&Perator obtained from the energy(p) of an electron in an
structures. unperturbed lattice by replacing the momentum components

Just like homogeneous bulk electronic crystals, photonii’oy their_ associated de(ivative operators. Thi_s work laid the
crystals on their own are of limited use. It has been propose undation of the effective-mass theory used in the 1950's to

) . . : - “Calculate the energy states of donors and acceptors in

to take advantage of their unique properties by mtroducm% . 2-14
defects to make waveguid&s® bends] branche$, and emiconductors. :
. 9 ' ' > In semiconductor physics, both small-scale defects such
filters.” When the length scale of these defects is substarnsg jmnrities, and large-scale perturbations such as hetero-
tially greater than the lattice constant, we call theetero-  ,hctions, are required to build useful devices. The investi-
structuresby analogy with semiconductor devices made bygation of each type of defect requires its own theoretical
the assembly of different types of crystals. apparatus. In the case of photonic crystals, states localized by

Whereas computations on bulk crystals can be carried oWma|l-scale defects have been addressed reééniking
using well-known techniques, the theoretical study of heterOConcepts derived from Wannier’s theory. In this work, we
structures and other defects represents a significant compgrovide a way of studying heterostructures, whose dimen-
tational challenge. The fully vectorial solution of Maxwell's sions are substantially larger than the crystal dimensions. We
equations on a nonperiodic structure is memory and timahow that in these circumstances the envelope of the electro-
intensive. For this reason, most work to date has been fanagnetic field obeys an equation similar to Ef. This will
cused on two-dimension&2D) structures. allow us to provide a rigorous derivation of the intuitive idea

In the present work, we investigate photonic crystal hetbehind the envelope approximation formalism depicted in
erostructures using an envelope formalism. Our method foFig. 1: once the dispersion relations of the constituent mate-
cuses on the envelope of the modes while accounting for theals arising from crystal-length-scale features are obtained,
essential consequences of the crystalline structure of the cothese may then be used as effective-medium inputs to the
stituents of the heterostructure. This approach allows us teolution of the heterostructure in the slowly varying enve-
investigate 3D crystals and provides a physical picture of théope picture.
behavior of light inside the superstructure. To demonstrate
this, we employ our method to study photonic crystal
waveguides, showing how waveguiding in photonic crystals
can be explained in analogy with available formalism used in  In bulk photonic crystals defined by the periodic dielectric
analyzing dielectric waveguides. We show that the quantitaconstante(r), the electric field modeg,, with frequencies
tive results obtained using the envelope formalism are iny, satisfy the wave equation
excellent agreement with a fully fledged computation of the

IIl. ENVELOPE APPROXIMATION FORMALISM

modes in photonic crystal waveguides. w2
Our approach is inspired by the formalism developed by VX (VX Ep(r)= — e(r)En(r). 2)
Slatet? in 1949 to explain the motion of electrons in per- c?
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a) whereW, (k) are unknown functions defining the expansion
of the mode ink space. Substituting into the wave equation
(6) and making use of our knowledge of the unperturbed
modes Eq(2), we obtain

> an<k>wﬁ<k>e<r>Enk<r>dk

=; fWn(k)w)z\e(r)[1+A(r)]Enk(r)dk- ®

We take the inner product between every member of this

b)o § equation and a modg,,- , that is, we multiply b)E:,k, and
= Dielectric profile . 2 integrate over the entire crystal. By orthogonality of modes,
& |-- Envelope 4 g
= |ZZ Feld o the leftmost term becomes
g Q
Q
; 2
< B W, (k) w2, (K'). 9
(] —_—
- g The first right-hand-side term is treated in a similar fashion.

Position To evaluate the term containing the perturbation, we make
two approximations. First, we assume that the perturbation
FIG. 1. (8 3D photonic crystal slab waveguidé) Intuitive  varies over a length scale that is much larger than the crystal
picture behind the envelope approximation formalism: the fastperiodicity. As explained in detail in the appendix, assuming
varying features of the electromagnetic field are due to the crystahat the Fourier coefficients ok (r) take large values for
while its envelope is determined by the shape of the heterostructur$k|<1/a allows us to neglect all but the first term in the
Fourier series oﬂ:,k, -€(r)uy . Second, we assume that two
By the Bloch-Floquet theorem, the modes take the form Bloch modesu,,,» andu,, associated with different bands
E, (1) = Uy (1) el 3) are orthogonal to one another_ even _though they are not taken
nk nk ' at the same wave vector. This obviates summation over all
where the Bloch functionsi,, have the periodicity of the bands—thus it entails that the perturbation causes negligible
lattice. As discussed in Ref. 16, the electric field modes ar€oupling between bands. Therefdisee the Appendjx the
orthogonal to one another with respect to the dielectric conperturbation(rightmos} term of Eq.(8) becomes
stant

(2w)3w§f A(r)e ik'r f W, (k)e'*"dk|dr. (10)
EX,. . (r)-e(r)Ep(r)dr=38,, 8(k—K"). (4
J nk K " We defineF ,(r), the Fourier transform oW,(k):
Similarly, the Bloch functions are normalized over a unit cell
of volumeV, so that Fn(r)zf Wn(k)e””dk. (11
1 * _ 3 We show later in this work thdt,, is the envelope function
Y, fce”un,k(rye(r)unk(r)dr—(ZTr) Onn ® 5t the mode.

The term(10) contains the inverse Fourier transform of
In this paper, we consider heterostructures defined by the productA(r)F,(r). Taking the Fourier transform of the
spatially varying perturbatiod (r) modulating the dielectric  projection of Eq.(8) along E,/,, and dropping the primes,
constant of the bulk crystal. This modulation varies slowlywe obtain the equation describing the behavior of the enve-
over a unit cell, which supposes that the length scale of théope of the mode of the heterostructure:
perturbation is large compared to the lattice constant. The

wave equation becomes w2 (—iV)F (1) =w[1+A(r)]F(1), (12)
o o2 wherew?(—iV) is the operator obtained fromZ(k) by re-
VX(VXE(r))= —;‘e(r)[1+A(r)]EA(r). (6)  placing the wavevector componerks, k,, andk, by the

c derivatives —id/ox,—idldy and —idldz. Throughout this

Throughout this derivation, the subscript refers to per- paper, we refer to Eq12) as theenvelope equation

turbed quantities. We expand the perturbed mBgeusing
the basis of the unperturbed modes lil. INTERPRETATION OF THE ENVELOPE EQUATION

The envelope approximation formalism provides a very

EA(F)=E JWn(k)Enk(r)dk, ) simple way of investigating photonic crystal heterostruc-
n tures. A scalar envelope equation replaces the full vectorial
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wave equation, and so it may be possible to obtain analytic Fok (r):eiko-ffnk (r). (14)
expressions for the frequency and envelope of the hetero- 0 0
structure modes. The method applies to any type of photoni -
crystal: only knowledge of its band structure is required,Ey Egs.(3), (7), (11), and(14), the modes may be written
through the operatwﬁ(—iﬁ). Therefore, once the crystal
has been characterized by other methods, be they computa- Exnk (r):j”fnk (k—ko)up(r)e'*dk, (15)
tional or experimental, the simulation of heterostructures fol- 0 0
lows easily _

The treatment used in deriving E@L.2) requires that the where fnko(k) denotes the inverse Fourier transform of
length scale of the heterostructure be significantly larger thamnko(r)_ Because the functio,ﬁnko(r) varies over the same

that of the crystal. The crystalline structuliee., periodicity length scale aa(r), as can be seen by substituting Etg)
and Bravais latticemust be the same everywhere in the het-. t0 (12). its Fouri & (k—K-) take | |
erostructure for Floquet’s theorem to hold. The heterostruc.” 0(12), its Fourier component( o) take large values

ture profile must be described by a multiplication by a factor®’ K~Ko only. Assuming thatun(r)~un,(r) over this

1+A(r). This description of the heterostructure simplifiesfange, we remove (r) from the integral to obtain
considerably the mathematical treatment of the problem and
laces emphasis on the role of expanding/contracting disper- _ _

I[s)ion relatiopns along the energy axiFS), as w?a shall see i?\ Sch). V. Bk = Fig(1) k(1) = (N Eni(1)- - (16)

It describes photonic crystal heterostructures consisting en- ) , , )

tirely of photonic crystais. To treat a more general class ofl "€ Physical meaning of the envelope functidiig, is now

heterostructures, including air-photonic crystal waveguidesglear: they modulate the bulk crystal Bloch functions. This

the envelope equation is required to hold in every region ofesult confirms the validity of the intuitive physical picture

the heterostructure separately. In this case, the envelog@esented in Fig. 1: at the crystalline length scale, the field

function is piecewise defined and the different regions can b&eeps features similar to that of the bulk material, but its

joined by satisfying the boundary conditiofsontinuity of ~ envelope is determined by the heterostructure.

the envelope function and of its derivatjv@his approach is

similar to that employed in semiconductor physics, where

every semiconductor forming the heterostructure is described

by a characteristic effective mass. We now solve the photonic crystal waveguide problem
In deriving the envelope equation, we assumed that thesing the envelope approximation method. We show that the

perturbation did not cause significant coupling between thelispersion relation, shapes and number of modes and single-

bands. This allowed us to simplify the projection of the right- mode condition are obtained by a treatment similar to that of

most term of Eq(8) on a mode of the bulk crystal, leading to usual dielectric waveguides.

expression(10). This assumption is an excellent one for We consider a slab waveguide parallel to thg plane,

small perturbations. We note that the constituent rapidlythe z axis being perpendicular to the plane of the guide, as

varying media may be high-contrast photonic bandgap mateshown in Fig. 1a). We define the components of the wave

rials, at no expense to the validity of solution. It is only the vector in the propagation directid and in the transverse

slowly varying heterostructure which is considered perturbasdirectionk; .

tively in the present treatment, and which is subject to the The waveguide is regarded as a perturbation from the

limitations of requirement of a modest perturbation. bulk crystal. For a guide of width12 and dielectric contrast
We conclude this discussion by showing that the functions\, the perturbation is defined as

F.(r) are the envelope functions of the heterostructure

IV. PHOTONIC CRYSTAL WAVEGUIDES

modes. While it is necessary to solve HG2) for every Ay if |Z<L
band, these equations are not independent because they share A(z)= o ' 17
the eigenvaluev, . Since it is possible to satisfy only one of 0 if [z]>L.

these at a time, there exists one perturbed state for every

band. We drop the summation over all bands in &j.and  Because of the assumptions of the envelope approximation
denoteE, ,= /W, E,dk the heterostructure mode having the method, the core and the cladding must have the same Bra-
frequency ,, associated with banda. The operatorw>  Vais lattice and periodicity.

(—i ﬁ) can be expanded in the vicinity of the wave vedtgr Since the perturbation is a function obnly, the envelope
of the light in the crystal: function solution must depend @wonly. Due to the symme-

try of the waveguide, the derivatives appearing in the enve-
lope equation must be of even order. The wave vekpr
1 9 must correspond to an extremum of the band structure in the
(i_ W—kog) + transverse K, or k,) direction, which ensures that
ko' " TTE Jw2(Ko)/ 9k,=0.
If terms are kept up to second order in the Taylor expan-
sion (13), and using Eq(14), the envelope equatiofil2)
This suggests a solution of the envelope equation of the forrbecomes

2

N Jw
wA(—iV)=wl(ko)+ > —
§:=ny,2 &kg

13
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1 dzfnko(z)
2m,  dZ

=[wi(ko) — @[ 1+ A(2)]If i, (2),
(18)

where, by analogy with quantum mechanics, we define

1 Pwi(ke)
= (19
m, ak;

an effective-mass-like term describing the curvature of the
band. Although we assume that the bands are well approxi-
mated by a quadratic expansion, this does not have to be the
case for the general method developed herein to apply:b)
higher-order terms could be retained at the expense of in-

creased complexity. The solution of E4.8) is

AcogKz) for |z|<L (even modes
Fricy(2) = Bsin(Kz) for |z|<L (odd modey,
Ce for |z|>L
(20
with
K=\2m, [0f,(1+A¢)~ wi(Ko)] (21)
and
y=v2m, [wi(ko)— wZ,]. (22)
The frequency can be eliminated to give the equation of an
ellipse
uz o2
F + ﬁ = 1, (23)
where
u=KL, U?=2m, 0?(kg)A,L? (24)
and
2m, w?(kg)AgL?
— e LA
v=yL, V 1+A, . (25)

Enforcing the continuity of the solution and of its deriva-

tive at the interface= =L gives an additional equation
v=utanu) (26)
for the even modes or
v=utanu—=/2) (27)

for the odd modes.
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FIG. 2. Photonic crystal waveguiding: guided modes exist in a
range of frequencies corresponding to an allowed band in the core
but not in the cladding(a) First band in the cladding and core
materials for a contrast df,~0.25.(b) Cross section of the band at
k,=0.3(27/a) showing the confinement frequency range.

V. DISCUSSION

The formalism employed to find the number and fre-
quency of guided modes and the single-mode condition is
similar to that encountered in the study of slab dielectric
waveguides. The major difference is the effective-mass-like
term which controls the size of the ellipse and affects the
number of allowed modes. Since the band structure is usu-
ally anisotropic, the guiding properties depend on the orien-
tation of the waveguide with respect to the crystal. The trans-
verse band structure curvature is an additional parameter that
can be engineered to achieve desired waveguiding properties
such as modal group velocity or dispersion.

In deriving these results, no assumption has been made
regarding the dielectric contraAfy, between the core and the
cladding. As such, guided modes can exist even though the
average refractive index in the core is lower than that of the
cladding(i.e., Ay<0), providedm, is negative too. The en-
velope approximation formalism allows us to state this im-
portant conclusion: photonic crystal waveguiding is possible
for wave vectors where the curvature of the band in the
transverse direction has the same sign as the dielectric con-
trast between the core and the cladding.

Figure 2 illustrates the mechanism of photonic crystal
waveguiding assuming that the contras§ and the trans-

~ In summary, the guided modes are given by the intersecgerse curvature of the band are both positive. The band struc-
tion of two curves: the ellips€23) and one of the functions ture in the core is compressed vertically by a factor of
(26) or (27). There exists at least one even mode. The single;/1+ A, compared to that of the cladding. This creates a

mode condition is given bW </2, or

8m, w2(ko)AoL2< 7. (28

frequency range where light is allowed to propagate in the
core but not in the cladding. A full bandgap in the cladding
material is therefore not required to achieve waveguiding.

125318-4



PHOTONIC CRYSTAL HETEROSTRUCTURES. . PHYSICAL REVIEW B 65 125318

The analogous mechanism applies whenand the curva- a)
ture of the band are both negative. 0.5 T T T T
oal o Cladding
~ U4 ---- Core e
VI. QUANTITATIVE RESULTS § - 5@&%‘? A
> 03 .
We have analyzed a slab waveguide using the envelope§ _____ e |

formalism developed herein. We consider 2D photonic crys- % 02 7]
tals to enable full quantitative comparison of envelope func- & [ i
tion results with exact numerical results. 3D crystals repre-

sent a particularly powerful application of the envelope 0 1 1 1 1
function formalism, but one which does not at the present 02 0.3 04 05
time lend itself to comparison between envelope function ku(znfa)

and exact numerical results.

The photonic crystal under study is a square lattice of 7~ 1 T T T T 20
vertical rods(i.e., oriented in they direction, the axes being
defined as in Fig. (). The rods have a radius of @2and
the width of the waveguide isl2=4a.

We compute the band structure of the bulk crystal using
the MIT photonic-bands packaders),}” which solves the
fully vectorial Maxwell’s equations with periodic boundary
conditions*® We also usevps to compute the modes of the
2D waveguide by taking a cross section perpendicular to the
axis of the rods. Because of translational symmetry in the
vertical direction, the 2D computation provides a valid S)
means of comparison with the 3D modes calculated using thes ! [T T T T
envelope function method. However, singes assumes pe- os b —= BRS8N, ction
riodic boundary conditions, the waveguiding structure simu-
lated is a superlattice. Using supercells of widtha3®as
usually sufficient to prevent coupling between the parallel
waveguides. A wider spacing was used for weakly guided
modes. -

The waveguide treatment presented above applies wher
the bands are well approximated by a quadratic expansion,
which is the case for the two first bands. Henceforth, we FIG. 3. Average refractive index higher in the core than in the

focus on this portion of the band structure. - cladding &, =0). (a) Dispersion relation of the waveguide and
~ We begin by considering the case in which the averag@and structure of the core and cladding materidds Even and(c)
index in the core is higher than in the cladding. For thegdd modes of the first band fig =/ a.

cladding material, the rods hawe=10 and the background
medium is air. We choose a contras§=0.1, which means
that the rods in the core hawe=11 and lie in a medium of = .
e=1.1. (This value being close te=1, the same back- tnuous media. _ _ o

ground material could be used in both core and cladding in AS mentioned earlier, photonic crystal waveguiding is

actual device designsGuided modes will exist where the possible even when the average index in the core is lower

bands. Figure @ shows the dispersion relation fd and the cladding in the example above: the cladding material
sweeping the entire first Brillouin zone. The shape of thdS Now made of rods oé=11 in a background ot=1.1,
modes at the edge of the Brillouin zone is shown in FigsWhile the core is made of rods havirg=10 lying in air. In
3(b),3(c). The cross section of the amplitude of the electricthis case, the contrast i~ —0.091, the cladding being the
trary position a|0ng tha axis_ The frequency of the modes Whel‘e the curvature Of the bandS iS negative, Wh|Ch occurs at
obtained using the envelope approximation method and nU¢. = 7/a in the case of the first two bands. As seen in Eq.
merical 2D computation usingiPB match withing a few (14), this transverse component of the wave vector intro-
tenths of percent_ As Shown, there exists a|WayS at least Oﬁé.lces a modulation to the enVeIOpe function in the transverse
guided mode. An odd mode is added when the single-modeéirection, so that the actual slowly varying envelope of the
condition Eq.(28) ceases to be satisfied. mode is the functiorinko. This modulation explains why the

These results provide a numerical justification of theenvelope function and actual field have opposite parities. The
physical picture presented in the introduction and depicted imispersion relation and shapes of the modes are displayed in
Fig. 1(b). As expected, the rapid variations of the electricFig. 4. The frequencies obtained using the envelope approxi-
field are features due to the crystalline structure, whereas thmation match the exact numerical results within 1%.
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=
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a Kk
) . . . . sze'(k KD Tu (r) - e(DA(N Uy (r)dr. (A1)
05

3 o4 The periodic functiom’;,k, - €U, can be expanded in a Fou-

e rier series

=R AV

% 0zr s Lladding 4 . »

= ol = Bl ] Ui (D)) u(1) =3 ben”,  (A2)

0 1 1 1 1
0 01 02 0.3 04 05 where theK , are reciprocal lattice vectors. The Fourier co-

ki(2n/a) efficients are given by

b)

:E ik — :iC fiel I - \\ o Diell const. | 15 g me if U*,k,(r). E(r)unk(r)eiiKm.rdra (A3)

8 o5 - Eﬁveiope?unctionl ’ ' g Volcen "

< g

% 0 ],';) where the integration is carried out over the voluxhgof a

E s 2 unit cell. The integralAl) becomes

5 &

-l

-15 - -5 0 5 10 15 _ i(k—k'+K)-r

Position (&) |_§ bmj e m A (r)dr

c) -

T ——— } =2 brA(k—k'+Kp), (A4)

'% 05 - ﬁsgigll)eel%unction DN Diel. const. | 15 g

~— . 51

é o 10 3 whereA (k) denotes the Fourier transform af(r).

= ?; In order to simplify the summation, we use the fact that

g s > the length scale of the dielectric perturbatiafr) is much

= : ® larger than the lattice constant, so that its Fourier compo-

£ - 0 ~ .

S 15 10 5 0 5 10 15 nentsA(k) are negligible except fojk|<1/a. In Eq. (A4),
Position (a) this means that we keep only the terms for which k'

o _ _ +Kn=~0. Now, becausk andk’ can always be taken in the
FIG. 4. Average refractive index lower in the core than in the first Brillouin zone and thak ,, is a reciprocal lattice vector,

cladding k, =m/a). (&) Dispersion relation of the waveguide and {pe only way of satisfying< ,=k—k' is to takeK ,=0, or
band structure of the core and cladding materidds Even and(c) m=0. The integral becomes

odd modes of the first band fég = /a.
VIl. CONCLUSION I %bOZ(k— k'). (A5)

We have developed an envelope approximation formalism
to study 3D photonic crystal heterostructures. The power of A second approximation is used to simplify the coefficient
the method lies in the fact that only knowledge of the bandoy. As mentioned in the text, we neglect the coupling be-
structure of the bulk crystal and heterostructure design artween the bands due to the perturbation by assuming that the
required. Thus, the bulk photonjc crystal can bg investigatedcalar productiy,, . (r)- (r)un(r) can be approximated by
seperately, and then employed into the calculation of the heh*/k(r) -€(r)uy(r). Making use of the orthogonality of the
erostructure. When applied to photonic crystal WaveguidesBn ;

) . ) . -~ Bloch functions Eq(5),
this approach yields a direct picture of the waveguiding
mechanism, allowing us to predict the frequency of the 1
guided modes, the dispersion relations of waveguides and the b~ u’;,k(r) &MUy (r)dr=(2m)38,,,. (A6)

shapes of the modes. The results obtained with our envelope %" Vo) cel

approximation method are in excellent agreement with a

fully vectorial computation of the field. The integral(A5) may thus be approximated as
APPENDIX

~ 35, i(k=k")rgr.
This appendix provides the detailed evaluation of the |~(2m)%0nn | Alne dr (A7)

rightmost term of Eq.8) leading to Eq.(10). Taking the
inner product of Eq(8) with a modeE,, /., we must evalu-  Substituting this expression into E¢) and interchanging
ate the integral the order of integration, we get E(LO).
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