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Photonic crystal heterostructures: Waveguiding phenomena and methods of solution
in an envelope function picture

Mathieu Charbonneau-Lefort, Emanuel Istrate, Mathieu Allard, Joyce Poon, and Edward H. Sargent
Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Canada, M5S 3

~Received 24 August 2001; published 12 March 2002!

We present an envelope approximation formalism to study three-dimensional photonic crystal heterostruc-
tures which only requires knowledge of the bulk crystal band structure and heterostructure design. Applying
this method to photonic crystal waveguides, we predict within 1% accuracy the frequencies of guided modes
and obtain the correct waveguided mode shapes. We show that guided modes are allowed for wave vectors
where the curvature of a band in a direction perpendicular to the plane of the waveguide has the same sign as
the refractive index contrast between the core and the cladding. We show that elementary waveguide theory
can be employed to compute mode shapes and dispersion relations.
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I. INTRODUCTION

Photonic crystals have been the subject of intense theo
ical work over the past decade, marked by the developm
of plane-wave techniques adapted to periodic structur1

transfer matrix methods,2 and different types of numerica
schemes to solve Maxwell’s equations.3 The computation of
the band structure of photonic crystals is now a we
established process, both in two- and three-dimensio
structures.

Just like homogeneous bulk electronic crystals, photo
crystals on their own are of limited use. It has been propo
to take advantage of their unique properties by introduc
defects to make waveguides,4–6 bends,7 branches,8 and
filters.9 When the length scale of these defects is subs
tially greater than the lattice constant, we call themhetero-
structuresby analogy with semiconductor devices made
the assembly of different types of crystals.

Whereas computations on bulk crystals can be carried
using well-known techniques, the theoretical study of hete
structures and other defects represents a significant com
tational challenge. The fully vectorial solution of Maxwell
equations on a nonperiodic structure is memory and t
intensive. For this reason, most work to date has been
cused on two-dimensional~2D! structures.

In the present work, we investigate photonic crystal h
erostructures using an envelope formalism. Our method
cuses on the envelope of the modes while accounting for
essential consequences of the crystalline structure of the
stituents of the heterostructure. This approach allows u
investigate 3D crystals and provides a physical picture of
behavior of light inside the superstructure. To demonstr
this, we employ our method to study photonic crys
waveguides, showing how waveguiding in photonic cryst
can be explained in analogy with available formalism used
analyzing dielectric waveguides. We show that the quant
tive results obtained using the envelope formalism are
excellent agreement with a fully fledged computation of
modes in photonic crystal waveguides.

Our approach is inspired by the formalism developed
Slater10 in 1949 to explain the motion of electrons in pe
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turbed periodic lattices. By applying the results of Wannie11

Slater showed that in the presence of a slowly varying p
turbation of the latticedV, the envelopeC(r ) of the electron
wave function obeys the Schro¨dinger-like equation

@E0~2 i\¹!1dV~r !#C~r !5EC~r !, ~1!

whereE is the energy of the electron andE0(2 i\¹) is the
operator obtained from the energyE0(p) of an electron in an
unperturbed lattice by replacing the momentum compone
by their associated derivative operators. This work laid
foundation of the effective-mass theory used in the 1950’s
calculate the energy states of donors and acceptors
semiconductors.12–14

In semiconductor physics, both small-scale defects s
as impurities, and large-scale perturbations such as he
junctions, are required to build useful devices. The inve
gation of each type of defect requires its own theoreti
apparatus. In the case of photonic crystals, states localize
small-scale defects have been addressed recently15 using
concepts derived from Wannier’s theory. In this work, w
provide a way of studying heterostructures, whose dim
sions are substantially larger than the crystal dimensions.
show that in these circumstances the envelope of the ele
magnetic field obeys an equation similar to Eq.~1!. This will
allow us to provide a rigorous derivation of the intuitive ide
behind the envelope approximation formalism depicted
Fig. 1: once the dispersion relations of the constituent ma
rials arising from crystal-length-scale features are obtain
these may then be used as effective-medium inputs to
solution of the heterostructure in the slowly varying env
lope picture.

II. ENVELOPE APPROXIMATION FORMALISM

In bulk photonic crystals defined by the periodic dielect
constante(r ), the electric field modesEnk with frequencies
vn satisfy the wave equation

¹W 3„¹W 3Enk~r !…5
vn

2

c2
e~r !Enk~r !. ~2!
©2002 The American Physical Society18-1
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By the Bloch-Floquet theorem, the modes take the form

Enk~r !5unk~r !eik•r, ~3!

where the Bloch functionsunk have the periodicity of the
lattice. As discussed in Ref. 16, the electric field modes
orthogonal to one another with respect to the dielectric c
stant

E En8k8
* ~r !•e~r !Enk~r !dr5dnn8d~k2k8!. ~4!

Similarly, the Bloch functions are normalized over a unit c
of volumeV0 so that

1

V0
E

cell
un8k
* ~r !•e~r !unk~r !dr5~2p!3dnn8 . ~5!

In this paper, we consider heterostructures defined b
spatially varying perturbationD(r ) modulating the dielectric
constant of the bulk crystal. This modulation varies slow
over a unit cell, which supposes that the length scale of
perturbation is large compared to the lattice constant.
wave equation becomes

¹W 3„¹W 3El~r !…5
vl

2

c2
e~r !@11D~r !#El~r !. ~6!

Throughout this derivation, the subscriptl refers to per-
turbed quantities. We expand the perturbed modeEl using
the basis of the unperturbed modes

El~r !5(
n
E Wn~k!Enk~r !dk, ~7!

FIG. 1. ~a! 3D photonic crystal slab waveguide.~b! Intuitive
picture behind the envelope approximation formalism: the fa
varying features of the electromagnetic field are due to the cry
while its envelope is determined by the shape of the heterostruc
12531
re
-

l

a

e
e

whereWn(k) are unknown functions defining the expansi
of the mode ink space. Substituting into the wave equati
~6! and making use of our knowledge of the unperturb
modes Eq.~2!, we obtain

(
n
E Wn~k!vn

2~k!e~r !Enk~r !dk

5(
n
E Wn~k!vl

2e~r !@11D~r !#Enk~r !dk. ~8!

We take the inner product between every member of
equation and a modeEn8k8 , that is, we multiply byEn8k8

* and
integrate over the entire crystal. By orthogonality of mod
the leftmost term becomes

Wn8~k8!vn8
2

~k8!. ~9!

The first right-hand-side term is treated in a similar fashio
To evaluate the term containing the perturbation, we m
two approximations. First, we assume that the perturba
varies over a length scale that is much larger than the cry
periodicity. As explained in detail in the appendix, assum
that the Fourier coefficients ofD(r ) take large values for
uku!1/a allows us to neglect all but the first term in th
Fourier series ofun8k8

* •e(r )unk . Second, we assume that tw
Bloch modesun8k8 and unk associated with different band
are orthogonal to one another even though they are not ta
at the same wave vector. This obviates summation over
bands—thus it entails that the perturbation causes neglig
coupling between bands. Therefore~see the Appendix!, the
perturbation~rightmost! term of Eq.~8! becomes

~2p!3vl
2E D~r !e2 ik8•rF E Wn8~k!eik•rdkGdr . ~10!

We defineFn(r ), the Fourier transform ofWn(k):

Fn~r ![E Wn~k!eik•rdk. ~11!

We show later in this work thatFn is the envelope function
of the mode.

The term~10! contains the inverse Fourier transform
the productD(r )Fn8(r ). Taking the Fourier transform of the
projection of Eq.~8! along En8k8 and dropping the primes
we obtain the equation describing the behavior of the en
lope of the mode of the heterostructure:

vn
2~2 i¹W !Fn~r !5vl

2@11D~r !#Fn~r !, ~12!

wherevn
2(2 i¹W ) is the operator obtained fromvn

2(k) by re-
placing the wavevector componentskx , ky , and kz by the
derivatives2 i ]/]x,2 i ]/]y and 2 i ]/]z. Throughout this
paper, we refer to Eq.~12! as theenvelope equation.

III. INTERPRETATION OF THE ENVELOPE EQUATION

The envelope approximation formalism provides a ve
simple way of investigating photonic crystal heterostru
tures. A scalar envelope equation replaces the full vecto

t-
al
re.
8-2
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wave equation, and so it may be possible to obtain anal
expressions for the frequency and envelope of the het
structure modes. The method applies to any type of photo
crystal: only knowledge of its band structure is require
through the operatorvn

2(2 i¹W ). Therefore, once the crysta
has been characterized by other methods, be they comp
tional or experimental, the simulation of heterostructures
lows easily

The treatment used in deriving Eq.~12! requires that the
length scale of the heterostructure be significantly larger t
that of the crystal. The crystalline structure~i.e., periodicity
and Bravais lattice! must be the same everywhere in the h
erostructure for Floquet’s theorem to hold. The heterostr
ture profile must be described by a multiplication by a fac
11D(r ). This description of the heterostructure simplifi
considerably the mathematical treatment of the problem
places emphasis on the role of expanding/contracting dis
sion relations along the energy axis, as we shall see in Se
It describes photonic crystal heterostructures consisting
tirely of photonic crystals. To treat a more general class
heterostructures, including air-photonic crystal waveguid
the envelope equation is required to hold in every region
the heterostructure separately. In this case, the enve
function is piecewise defined and the different regions can
joined by satisfying the boundary conditions~continuity of
the envelope function and of its derivative!. This approach is
similar to that employed in semiconductor physics, wh
every semiconductor forming the heterostructure is descr
by a characteristic effective mass.

In deriving the envelope equation, we assumed that
perturbation did not cause significant coupling between
bands. This allowed us to simplify the projection of the righ
most term of Eq.~8! on a mode of the bulk crystal, leading t
expression~10!. This assumption is an excellent one f
small perturbations. We note that the constituent rapi
varying media may be high-contrast photonic bandgap m
rials, at no expense to the validity of solution. It is only t
slowly varying heterostructure which is considered pertur
tively in the present treatment, and which is subject to
limitations of requirement of a modest perturbation.

We conclude this discussion by showing that the functio
Fn(r ) are the envelope functions of the heterostruct
modes. While it is necessary to solve Eq.~12! for every
band, these equations are not independent because they
the eigenvaluevl . Since it is possible to satisfy only one o
these at a time, there exists one perturbed state for e
band. We drop the summation over all bands in Eq.~7! and
denoteEln5*WnEnkdk the heterostructure mode having th
frequency vln associated with bandn. The operatorvn

2

(2 i¹W ) can be expanded in the vicinity of the wave vectork0
of the light in the crystal:

vn
2~2 i¹W !5vn

2~k0!1 (
j5x,y,z

]vn
2

]kj
U

k0

S 1

i

]

]kj
2k0jD1•••.

~13!

This suggests a solution of the envelope equation of the f
12531
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Fnk0
~r !5eik0•r f nk0

~r !. ~14!

By Eqs.~3!, ~7!, ~11!, and~14!, the modes may be written

Elnk0
~r !5E f̃ nk0

~k2k0!unk~r !eik•rdk, ~15!

where f̃ nk0
(k) denotes the inverse Fourier transform

f nk0
(r ). Because the functionf nk0

(r ) varies over the same

length scale asD(r ), as can be seen by substituting Eq.~14!

into ~12!, its Fourier componentsf̃ n(k2k0) take large values
for k'k0 only. Assuming thatunk(r )'unk0

(r ) over this

range, we removeunk0
(r ) from the integral to obtain

Elnk0
~r !5Fnk0

~r !unk0
~r !5 f nk0

~r !Enk0
~r !. ~16!

The physical meaning of the envelope functionsFnk0
is now

clear: they modulate the bulk crystal Bloch functions. Th
result confirms the validity of the intuitive physical pictur
presented in Fig. 1: at the crystalline length scale, the fi
keeps features similar to that of the bulk material, but
envelope is determined by the heterostructure.

IV. PHOTONIC CRYSTAL WAVEGUIDES

We now solve the photonic crystal waveguide proble
using the envelope approximation method. We show that
dispersion relation, shapes and number of modes and sin
mode condition are obtained by a treatment similar to tha
usual dielectric waveguides.

We consider a slab waveguide parallel to thex-y plane,
the z axis being perpendicular to the plane of the guide,
shown in Fig. 1~a!. We define the components of the wav
vector in the propagation directionki and in the transverse
directionk' .

The waveguide is regarded as a perturbation from
bulk crystal. For a guide of width 2L and dielectric contras
D0, the perturbation is defined as

D~z!5H D0 if uzu,L,

0 if uzu.L.
~17!

Because of the assumptions of the envelope approxima
method, the core and the cladding must have the same
vais lattice and periodicity.

Since the perturbation is a function ofz only, the envelope
function solution must depend onz only. Due to the symme-
try of the waveguide, the derivatives appearing in the en
lope equation must be of even order. The wave vectork0
must correspond to an extremum of the band structure in
transverse (k' or kz) direction, which ensures tha
]vn

2(k0)/]kz50.
If terms are kept up to second order in the Taylor exp

sion ~13!, and using Eq.~14!, the envelope equation~12!
becomes
8-3
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1

2m'

d2f nk0
~z!

dz2
5†vn

2~k0!2vl
2@11D~z!#‡f nk0

~z!,

~18!

where, by analogy with quantum mechanics, we define

1

m'

[
]2vn

2~k0!

]kz
2

, ~19!

an effective-mass-like term describing the curvature of
band. Although we assume that the bands are well appr
mated by a quadratic expansion, this does not have to be
case for the general method developed herein to ap
higher-order terms could be retained at the expense of
creased complexity. The solution of Eq.~18! is

f nk0
~z!5H A cos~Kz! for uzu,L ~even modes!,

B sin~Kz! for uzu,L ~odd modes!,

Ce2guzu for uzu.L
~20!

with

K[A2m'@vln
2 ~11D0!2vn

2~k0!# ~21!

and

g[A2m'@vn
2~k0!2vln

2 #. ~22!

The frequency can be eliminated to give the equation of
ellipse

u2

U2
1

v2

V2
51, ~23!

where

u[KL, U2[2m'vn
2~k0!D0L2 ~24!

and

v[gL, V2[
2m'vn

2~k0!D0L2

11D0
. ~25!

Enforcing the continuity of the solution and of its deriv
tive at the interfacez56L gives an additional equation

v5u tan~u! ~26!

for the even modes or

v5u tan~u2p/2! ~27!

for the odd modes.
In summary, the guided modes are given by the inters

tion of two curves: the ellipse~23! and one of the functions
~26! or ~27!. There exists at least one even mode. The sin
mode condition is given byU,p/2, or

8m'vn
2~k0!D0L2,p2. ~28!
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V. DISCUSSION

The formalism employed to find the number and fr
quency of guided modes and the single-mode condition
similar to that encountered in the study of slab dielect
waveguides. The major difference is the effective-mass-
term which controls the size of the ellipse and affects
number of allowed modes. Since the band structure is u
ally anisotropic, the guiding properties depend on the ori
tation of the waveguide with respect to the crystal. The tra
verse band structure curvature is an additional parameter
can be engineered to achieve desired waveguiding prope
such as modal group velocity or dispersion.

In deriving these results, no assumption has been m
regarding the dielectric contrastD0 between the core and th
cladding. As such, guided modes can exist even though
average refractive index in the core is lower than that of
cladding~i.e., D0,0), providedm' is negative too. The en
velope approximation formalism allows us to state this i
portant conclusion: photonic crystal waveguiding is possi
for wave vectors where the curvature of the band in
transverse direction has the same sign as the dielectric
trast between the core and the cladding.

Figure 2 illustrates the mechanism of photonic crys
waveguiding assuming that the contrastD0 and the trans-
verse curvature of the band are both positive. The band st
ture in the core is compressed vertically by a factor
A11D0 compared to that of the cladding. This creates
frequency range where light is allowed to propagate in
core but not in the cladding. A full bandgap in the claddi
material is therefore not required to achieve waveguidi

FIG. 2. Photonic crystal waveguiding: guided modes exist in
range of frequencies corresponding to an allowed band in the
but not in the cladding.~a! First band in the cladding and cor
materials for a contrast ofD0'0.25.~b! Cross section of the band a
ki50.3(2p/a) showing the confinement frequency range.
8-4
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The analogous mechanism applies whenD0 and the curva-
ture of the band are both negative.

VI. QUANTITATIVE RESULTS

We have analyzed a slab waveguide using the enve
formalism developed herein. We consider 2D photonic cr
tals to enable full quantitative comparison of envelope fu
tion results with exact numerical results. 3D crystals rep
sent a particularly powerful application of the envelo
function formalism, but one which does not at the pres
time lend itself to comparison between envelope funct
and exact numerical results.

The photonic crystal under study is a square lattice
vertical rods~i.e., oriented in they direction, the axes being
defined as in Fig. 1~a!. The rods have a radius of 0.2a and
the width of the waveguide is 2L54a.

We compute the band structure of the bulk crystal us
the MIT photonic-bands package~MPB!,17 which solves the
fully vectorial Maxwell’s equations with periodic boundar
conditions.18 We also useMPB to compute the modes of th
2D waveguide by taking a cross section perpendicular to
axis of the rods. Because of translational symmetry in
vertical direction, the 2D computation provides a va
means of comparison with the 3D modes calculated using
envelope function method. However, sinceMPB assumes pe
riodic boundary conditions, the waveguiding structure sim
lated is a superlattice. Using supercells of width 32a was
usually sufficient to prevent coupling between the para
waveguides. A wider spacing was used for weakly guid
modes.

The waveguide treatment presented above applies w
the bands are well approximated by a quadratic expans
which is the case for the two first bands. Henceforth,
focus on this portion of the band structure.

We begin by considering the case in which the aver
index in the core is higher than in the cladding. For t
cladding material, the rods havee510 and the background
medium is air. We choose a contrastD050.1, which means
that the rods in the core havee511 and lie in a medium of
e51.1. ~This value being close toe51, the same back
ground material could be used in both core and cladding
actual device designs.! Guided modes will exist where th
curvature is positive, which occurs atk'50 for the first two
bands. Figure 3~a! shows the dispersion relation forki
sweeping the entire first Brillouin zone. The shape of
modes at the edge of the Brillouin zone is shown in Fi
3~b!,3~c!. The cross section of the amplitude of the elect
field computed numerically withMPB was taken at an arbi
trary position along thex axis. The frequency of the mode
obtained using the envelope approximation method and
merical 2D computation usingMPB match withing a few
tenths of percent. As shown, there exists always at least
guided mode. An odd mode is added when the single-m
condition Eq.~28! ceases to be satisfied.

These results provide a numerical justification of t
physical picture presented in the introduction and depicte
Fig. 1~b!. As expected, the rapid variations of the elect
field are features due to the crystalline structure, whereas
12531
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envelope behaves as though the core and cladding were
tinuous media.

As mentioned earlier, photonic crystal waveguiding
possible even when the average index in the core is lo
than that in the cladding. We interchange the roles of the c
and the cladding in the example above: the cladding mate
is now made of rods ofe511 in a background ofe51.1,
while the core is made of rods havinge510 lying in air. In
this case, the contrast isD0'20.091, the cladding being th
reference~unperturbed! material. Guided modes are allowe
where the curvature of the bands is negative, which occur
k'5p/a in the case of the first two bands. As seen in E
~14!, this transverse component of the wave vector int
duces a modulation to the envelope function in the transve
direction, so that the actual slowly varying envelope of t
mode is the functionf nk0

. This modulation explains why the
envelope function and actual field have opposite parities.
dispersion relation and shapes of the modes are displaye
Fig. 4. The frequencies obtained using the envelope appr
mation match the exact numerical results within 1%.

FIG. 3. Average refractive index higher in the core than in t
cladding (k'50). ~a! Dispersion relation of the waveguide an
band structure of the core and cladding materials.~b! Even and~c!
odd modes of the first band forki5p/a.
8-5
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VII. CONCLUSION

We have developed an envelope approximation formal
to study 3D photonic crystal heterostructures. The powe
the method lies in the fact that only knowledge of the ba
structure of the bulk crystal and heterostructure design
required. Thus, the bulk photonic crystal can be investiga
seperately, and then employed into the calculation of the
erostructure. When applied to photonic crystal waveguid
this approach yields a direct picture of the waveguid
mechanism, allowing us to predict the frequency of t
guided modes, the dispersion relations of waveguides and
shapes of the modes. The results obtained with our enve
approximation method are in excellent agreement with
fully vectorial computation of the field.

APPENDIX

This appendix provides the detailed evaluation of
rightmost term of Eq.~8! leading to Eq.~10!. Taking the
inner product of Eq.~8! with a modeEn8k8 , we must evalu-
ate the integral

FIG. 4. Average refractive index lower in the core than in t
cladding (k'5p/a). ~a! Dispersion relation of the waveguide an
band structure of the core and cladding materials.~b! Even and~c!
odd modes of the first band forki5p/a.
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I[E ei (k2k8)•run8k8
* ~r !•e~r !D~r !unk~r !dr . ~A1!

The periodic functionun8k8
* •eunk can be expanded in a Fou

rier series

un8k8
* ~r !•e~r !unk~r !5(

m
bmeiKm•r, ~A2!

where theKm are reciprocal lattice vectors. The Fourier c
efficients are given by

bm[
1

V0
E

cell
un8k8
* ~r !•e~r !unk~r !e2 iKm•rdr , ~A3!

where the integration is carried out over the volumeV0 of a
unit cell. The integral~A1! becomes

I 5(
m

bmE ei (k2k81Km)•rD~r !dr

[(
m

bmD̃~k2k81Km!, ~A4!

whereD̃(k) denotes the Fourier transform ofD(r ).
In order to simplify the summation, we use the fact th

the length scale of the dielectric perturbationD(r ) is much
larger than the lattice constant, so that its Fourier com
nentsD̃(k) are negligible except foruku!1/a. In Eq. ~A4!,
this means that we keep only the terms for whichk2k8
1Km'0. Now, becausek andk8 can always be taken in th
first Brillouin zone and thatKm is a reciprocal lattice vector
the only way of satisfyingKm5k2k8 is to takeKm50, or
m50. The integral becomes

I'b0D̃~k2k8!. ~A5!

A second approximation is used to simplify the coefficie
b0. As mentioned in the text, we neglect the coupling b
tween the bands due to the perturbation by assuming tha
scalar productun8k8

* (r )•e(r )unk(r ) can be approximated by
un8k
* (r )•e(r )unk(r ). Making use of the orthogonality of the

Bloch functions Eq.~5!,

b0'
1

V0
E

cell
un8k
* ~r !•e~r !unk~r !dr5~2p!3dn8n . ~A6!

The integral~A5! may thus be approximated as

I'~2p!3dn8nE D~r !ei (k2k8)•rdr . ~A7!

Substituting this expression into Eq.~8! and interchanging
the order of integration, we get Eq.~10!.
8-6
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