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The photonic analogue of the graded heterostructure:

Analysis using the envelope approximation

EMANUEL ISTRATE* AND EDWARD H. SARGENT

Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road,
Toronto, Ontario, Canada M5S 3G4

(*author for correspondence: E-mail: e.istrate@utoronto.ca)

Abstract. We develop and deploy an envelope function formalism in order to study graded photonic
crystals — periodic photonic media whose features vary continuously with position. We use the method to
reduce the properties of the uniform crystals to the spectral position of their band edges and an effective
mass-like term. These are employed within the Schrodinger-like equation derived herein to determine the
behaviour of light inside a specific graded photonic crystal created using depth-dependent infiltration of an
artificial opal.
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1. Introduction

The analogy between wave behaviour in electronic and photonic crystals has
proven instructive, inspirational, and imperfect.

Much less explored to date is an analogy in photonics with the revolution
in electronics enabled by demonstration of heteroepitaxial fabrication
methods. The concatenation of electronic crystals — be they lattice-matched,
strained, or dislocated — has led to the embodiment of complex functionality
inside a single electronic device. Electronic functional devices exploit engi-
neering of the quantum mechanical behaviour of charge carriers through
controlled variation of the local band structure. Resonant tunnelling diodes
and transistors, in which high speed, negative differential resistance, and
multistable memory functions are exhibited, epitomize this principle of
transforming novel physics into useful function.

One important aspect of electronic band structure engineering is the re-
alization of graded heterostructures, in which the composition is varied
continuously in space. Electronic and optoelectronic devices which exploit
these effects include, to date: graded-base heterostructure bipolar transistors
which promote the egress of carriers through the base; graded separate
confinement heterostructure laser active regions which not only confine light
to the quantum wells, but may also promote transport within the active
region and increase device bandwidth (Marcinkevicius et al. 1995); graded
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p—n junction solar cells with increased conversion efficiency (Sinkkonen
1994); superlattice graded band gap photodiodes with increased bandwidth
(Yih et al. 1995); delta-doped graded heterostructures in which regions of
doping are separated from regions of conduction for reduced carrier scat-
tering (Li et al. 1999).

The importance of semiconductor compositional grading extends beyond
the realm of deliberate band structure engineering. Real bulk crystals exhibit
slowly varying strain fluctuations across their spatial extent. Amorphous
semiconductors may employ spatially varying densities of states (Furlan
et al. 1993). Ohmic contact formation between metallic alloys and semicon-
ductors has been described in terms of effective band structure grading
(Wuyts et al. 1992).

Thus, compositional grading is of critical importance to the operation and
understanding of contemporary electronics. Its importance extends from
functionally complex band structure-engineered devices to simple material
interfaces and even nominally bulk media.

In response, we have adopted the view that analogous phenomena in
photonic crystals may be of similar importance in transforming the novel
physics of the photonic band gap into useful, novel function.

Photonic crystal heterostructures have been recently introduced as a means
to create functional devices using photonic crystals (Istrate and Sargent
2000a, E. Istrate and E. H. Sargent, submitted; Yano ez al. 2000). The
analysis and simulation of such photonic structures is more difficult than that
of uniform, or bulk, photonic crystals, due to the fact that the infinite peri-
odicity of the sample may no longer be exploited. An alternative method for
the analytical computation of the behaviour of such structures was proposed
(E. Istrate and E. H. Sargent, submitted), which simplifies this problem
significantly.

Graded — or chirped — photonic crystals are a special case of a photonic
crystal junction, where the properties of the crystal vary smoothly over a
significant number of photonic crystal layers, as compared to the abrupt
variation of the heterostructures discussed so far. They can appear acci-
dentally in the fabrication of photonic crystals by infiltration (Blanco et al.
2000) if the infiltration process is not completely uniform over the entire
volume of the sample. Different levels of infiltration translate into different
average refractive indices and hence different band structures. Graded
structures can also appear during the holographic fabrication of photonic
crystals by interference of four laser beams (Campbell ez al. 2000). In such a
structure attenuation of the beams as they traverse the photoresist may
produce a non-uniform, graded sample. A good understanding of the be-
haviour of graded photonic crystals is therefore essential when evaluating the
quality of infiltrated photonic crystals as well as for crystals produced holo-
graphically.
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In this paper the use of the envelope approximation (E. Istrate and E. H.
Sargent, submitted) with graded, slowly varying, photonic crystals is dis-
cussed. The work is analogous with the analysis of semiconductor electronic
heterostructures and graded junctions (Weisbuch and Vinter 1991; Chow and
Koch 1999).

2. Theory

A graded photonic crystal junction, like any photonic crystal heterostructure
displays variations on two length scales. The first is the periodicity of the
underlying photonic crystal, called the bulk crystal in the present work. The
second variation is due to the grading of the structure and is a much slower
variation. For the inverted opals with varying infiltration this could take the
form of an increasing average index.

The envelope approximation presented herein separates the effects of the
variations on these two scales and allows analysis to take place in two steps.
First, knowledge of the band structure of the bulk crystals forming the
junction is used to obtain a parameter that will describe the effects of the fast
variation due to the crystal periodicity. This is similar to the effective mass
used with semiconductor heterojunctions. Given knowledge of this para-
meter, the analysis can concentrate on the effects of the slower variation due
to the graded junction. The photonic crystal is treated as a quasi-homoge-
neous medium described by the effective mass-like term. The approach is not
unlike the successful deployment of continuous-matter approximations (e.g.
hydrodynamic models) in the analysis of fundamentally discrete media
composed of individual atoms.

The separation of the two length scales starts by dividing the dielectric
constant of the structure into a slowly varying, a quickly varying, and a
constant component:

€=+ &(r) +€,(r) =€ + €(r), (1)

where €, represents the spatially varying component of the dielectric profile.
This is included in the wave equation to obtain:

{V2 + wiples + e(r)] = V(V-)}E; = 0. (2)

Here A represents the state of the electric field in the graded junction.
Assuming that the crystal grading is much slower than the photonic crystal

periodicity, we can express the electric field as a superposition of bulk Bloch

modes E,x = u,xexp(ik - r). The Bloch functions can in turn be expressed
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in terms of the band-edge Bloch functions u,o, with k=0. Using
(W 0lu,x) = (m|n, k), we obtain:

Z Uy, 0 eXP lk l‘)< n.k|El> <m’n7 k> = Z exp(ik ' l') VV/l,m,kum,O (l‘),
m,n.k m.k
(3)

with W,k 2 3", (m|n,k)(E,«|E;). This expression for the electric field can
now be used in the wave equation which takes the form:

D WimidV? + @jules + eo(r)] = V(V-)} exp(ik - 1) (r) = 0. (4)
mk

This equation can be expanded into the form:

> Wimkexp(ik -r) [—kz + 2i<k 66 +kyaa + k. aa) —iV(k-) + k(k-)
m.,k

— (V") + (03 — ) pes(r) + (0F — of ) e + wi,ues(r)} u,(r)=0. (5)

Here u,, represents the Bloch function u,,( at the band edge and w,, repre-
sents the photon frequency at this edge.

The envelope approximation separates the two length scales of the pho-
tonic crystal periodicity and of the junction variations. This is expressed
mathematically by separating the position vector r into the two components
r = R + p. R represents the position of each unit cell within the crystal, while
p represents the positions inside the unit cell. Hence p is used to represent the
rapid variations of the photonic crystal, while R is used to measure the much
slower variations in the junction.

Equation (5) is solved by multiplying by exp(—ik’ - r)u’(r) and integrating
over the volume of the crystal. The result, after reversing the variables k and
K is:

[(0)2 — @ )MG]) - k ]VVLn,k + Z [Zikn,n,m - inl@n,m + dnm — iTCn,m

+ (0] = O s Womp = > 0ipey (W0 = 0. (6)
kf

The expression above contains the approximation that ¢, varies slowly en-
ough that it can be taken to be constant in each unit cell. The new terms
introduced in this equation are defined as:

3
nnm = Z kl/d pun al (7)

I=xy,z
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Tiwm & / & pu’ - V(K - uy), (8)
Tm 2 / d*ou’ - k(V - u,), 9)
G2 [ ot (k- u,), (10)

&/ nm & / & puse(r)u,, (1)
w2 S explifk — K- R)ey(R). (12)

R

In order to compue the electric field state for a specific band, n, described by
the superposition of Bloch states W, ,x, we make the approximation that all
other (remote) bands j # n do not couple with each other. We also neglect ¢
and €/, for this remote band coupling and use k*> = w’e to approximate
k? ~ (w; — @?)uep to compute the electric field state of the remote bands:

2iky jp — T jn + qjn — T

Wik = Winx (@ - oD)ues (13)
This result is used for the bands W, , x in Equation (6):
W{ (07— ey — 2] 4 3 o
e (w5, — ) pep
X ik — T+ G — iTnm + (0 — L) HEf ] }
+ Z wiuey Wik = 0. (14)
v

For semiconductors the large term in braces in the equation above is used to
define an effective mass which characterizes each particular region of semi-
conductor in a heterostructure (Chow and Koch 1999). Here we proceed in a
similar fashion by defining an effective mass-like term:

L A Z 2ikn,m,n - ink,m,n + qmn — inm,n
= 2(m2 — 2
m* o k* (w2, — w2)uep

X [2ikn,n,n1 - ink,n,m + qnm — inn,m + (G)i - wfn):uef.,n,m] . (15)

Using this definition, we now take the Fourier transform of the wave
equation, Equation (14). This is done by multiplying by exp(ik - R) and in-
tegrating over d°’k. We then employ the definition:



222 E. ISTRATE AND E. H. SARGENT

VV)_,n (l‘) é Z eXp(lk . l‘) VV/l,n,ky (16)
k

to obtain the final equation:
V2
b e (R WialR) = (07— e (R (17

The above equation is very similar to the starting wave equation, Equa-
tion (2), with two important differences. First of all, the equation has no
direct reference to the dielectric profile of the photonic crystal, e,. There is
also no reference to the position variable p describing positions within the
unit cells of the crystal. The only position variable used here is R which only
describes the positions of the individual lattice cells, and is used to charac-
terize the slower variations due to the junctions, €. The second difference
between the above equation and the starting equation is the appearance of
the effective mass, m*. This parameter contains information about the un-
derlying photonic crystal.

Equation (17) is very similar in shape to the Schrédinger equation of a
particle in a quantum mechanical system. In fact, techniques and solutions
developed for quantum mechanical particles may be applied directly for its
solution. As was shown successfully in (E. Istrate and E. H. Sargent, sub-
mitted), both quantum wells (Yano et al. 2000) and superlattices (Istrate and
Sargent 2000a) can be analysed with great precision using the equations
developed for the study of semiconductors (Bastard 1988).

3. Application to the study of graded junctions

The envelope approximation allows the analysis of photonic crystal junctions
using a two-step approach. In the first step the effective mass is computed for
all photonic crystals in the junction. This only requires knowledge of the bulk
properties of the photonic crystals, which are well known. Needed in par-
ticular are the band-edge frequencies of the crystals as well as the electro-
magnetic modes at these edges. These parameters are used in Equation (15)
to compute the effective mass. The second step is to solve the envelope
Equation (17), for which again many techniques are available, both analyt-
ical and numerical. The result of this calculation is either a real-valued wave
vector, indicating that waves can propagate through the structure, or a
complex decay constant, describing waves in the stop-band of the structure
which are rejected.

The two-step approach described above is also applicable for graded
junctions. The only complication added is due to the fact that we do not have
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a finite number of bulk crystals forming the junctions. Instead, the properties
of the crystal vary continuously with position in the junction, which produces
a continuously varying effective mass. Such an effective mass cannot be
calculated directly by the method described above, since we do not have a
uniform crystal from which to compute the band structure and eigenmodes
required. We can solve this problem by approximating the graded crystal by
a sequence of junctions between narrow, uniform layers of photonic crystals.
Effective masses are computed for all of these crystals. The true effective mass
profile for the graded crystal is then obtained by interpolation from this set of
effective masses.

4. Example calculation

To illustrate the technique described in the previous sections, we report the
analysis of a graded photonic crystal obtained by non-uniform infiltration of
a high-index material. For simplicity, the method is described in one-
dimension, but is fully deployable in 3D structures.

The profile of the structure is shown in Fig. 1. It is assumed that infiltra-
tion was stronger near the edges of the sample, whereas little material was
infiltrated in the centre. The structure is 25um long with lattice period
500 nm. Its refractive index varies between 1 and 2. It is assumed that the
cells near the edges are 80% full of the high-index material, while at the
centre, they are 50% full. The variation in the fill ratio is assumed to vary
linearly.

The structure is split into 13 slices and the envelope approximation is
applied to each one. The results are tabulated in Table 1. The profile of the
effective mass is shown in Fig. 2.

As a result of the varying properties of the graded junction, the band edges
also move. The position of the first two k = 0 band edges is computed and
displayed in Fig. 3. The area between these two edges forms a stop band,
which is indicated in this figure by the shading.

The effective mass profile, together with the shape of the band edges, give a
complete description of our graded junction, enabling us to analyse the be-
haviour of light entering it. It is readily seen that the band gap profile in

.

Fig. 1. Dielectric profile of example graded crystal.
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Table 1. Results of the simulation

Position (um) a (nm) b (nm) m*
0 100 400 -0.0227
2.08 125 375 -0.0293
4.17 150 350 —-0.0361
6.25 175 325 —-0.0429
8.33 200 300 —-0.0477
10.42 225 275 —-0.0532
12.5 250 250 —-0.0534

Only results for the first half of the structure are shown, since the other half is symmetrical with the first.
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Fig. 2. Variation of the effective mass with position in the sample.

Fig. 3 forms a well that could confine light resonantly, in a manner similar to
a quantum mechanical well.

The eigenstates of this photonic well are readily computed just as bound
states of a semiconductor heterojunction are obtained. The equation gov-
erning the behaviour of light in this junction is obtained from Equation (17):

1o
s W) = = [} = @) s Wi ) (18)
This equation can be solved numerically using the effective mass and band-
edge profiles. For our example structure we have found a state that satisfies
the boundary condition requirement of zero amplitude as x — +oo. Such a
state was found for a wavelength of 0.859 um. The position of the bound
state and its shape are shown in Fig. 3.
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Fig. 3. Band edges and the resonant state in the sample. The shaded area represents the band gap. The
thick line gives the resonant wavelength, the dashed line shows the shape of the resonant state.

5. Conclusions

The envelope approximation was shown to be an essential tool for analysing
semiconductor heterojunctions. We have applied the same concept to pho-
tonic crystal graded junctions. These are crystals whose parameters vary
slowly with position. This variation makes graded junctions non-periodic,
which means that the standard methods for the analysis of bulk crystals
cannot be applied any more.

In the method developed herein, the bulk crystals forming the junction are
first used to obtain an effective mass. The photonic crystals may then be
treated as quasi-homogeneous materials which are analysed using the stan-
dard methods developed for quantum mechanics.

Using this approximation, it was shown that graded photonic crystal
junctions are easily analysed. In our example structure we have found the
wavelength at which light will be confined resonantly in the fundamental
mode of the structure.

Although graded crystals can appear naturally during the fabrication of
normal crystals through infiltration or holography, they can also be fabri-
cated in such a way as to exploit their useful properties. For this, gradings
could be made by non-uniform infiltration, as above, or by sedimentation of
colloidal crystals, in a way similar to the one described in (Kumacheva et al.
1999), by starting with a suspension of non-uniform spheres, and achieving
mass-dependent order of sedimentation.

A good understanding of graded photonic crystals is essential for the en-
gineering of functional devices based on photonic crystals. By choosing the
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Fig. 4. Possible application of graded photonic crystal junctions, representing an input coupler, a reso-
nant well and an output coupler.

correct grading profile, equally spaced states in a photonic crystal quantum
well can be achieved, in a similar way to the equal spacing displayed by
parabolic semiconductor quantum wells (quantum harmonic oscillators).
Graded photonic crystals can also facilitate the input and output of light
from photonic crystal-based devices, in a manner similar to the formation of
ohmic contacts. In such a way, light could be input in a region of the crystal
where propagation is permitted at the wavelength of interest. A grading in
the crystal is then used to bring light into a region where the light can be
influenced by the crystal. Since the grading is smooth, the transitions can be
achieved without reflections due to discontinuities, as illustrated in Fig. 4. In
this way, photonic crystal gradings could also be used as anti-reflection re-
gions.
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