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When unity reflectance is approached, the Fourier-transform method of calculating the reflectance
spectrum of an optical grating modulated by a slowly varying envelope becomes unacceptably inaccurate.
The modified Fourier transform method of Bovard �Appl. Opt. 29, 24 �1990�� can achieve complete
accuracy for quarter-wave gratings. We report herein the extension of Bovard’s method to non-quarter-
wave gratings. We demonstrate the accurate deployment of our simplified modified Fourier-transform
method to apodized linear gratings and optically apodized nonlinear gratings. © 2002 Optical Society of
America

OCIS codes: 070.4340, 070.2590, 060.4370, 230.4320.
1. Introduction

The synthesis of filters is widely and well understood
through Fourier-transform �FT� methods. An entire
body of convenient computational methods, as well as
a shared intuition and vocabulary, surrounds the use
of methods such as apodization to engineer the spec-
trum of a filter.

This is true in some respect for optical filters, but
not fully. The FT relation between the reflectance
and the refractive-index profile of a grating1–10 be-
comes particularly inexact as the reflectance ap-
proaches unity, a regime of central interest in, for
example, wavelength-selective add–drop filters for
multiwavelength networks. The modified Fourier-
transform method �MFT� of Bovard1 is accurate even
when reflectance is close to 100%; however, it works
only with a quarter-wave structure.

2. Review of the Method of Bovard for the Special
Case of Quarter-Wave Stacks

The quarter-wave stack11,12 is specified in Fig. 1, with
a � b. The logarithmic derivative r�x� of the
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refractive-index profile is

r� x� � r0 �
m��p

p�1 ���x �
4m � 3

4	0
� � ��x �

4m � 1
4	0

�� ,

(1)

where x is the centered double optical thickness, p �
N�2, r0 � �ln�nh�nl���2, and 	0 � 1�
0. The loga-
rithmic derivative consists only of components that
are due to discontinuous interfaces in the refractive-
index profile.

The �MFT� relationship between logarithmic deriv-
ative r�x� and reflectance spectral function Q derived
by Bovard is1,3

Q���exp�i����� � 

��

��

r� x�exp��2i�vx�dx, (2)

where v is the wave-number distortion factor:

v �
2	0

�
cosh�1 �cosh r0 sin

�	

2	0
� , (3)

	 � 1�
, 
 is the wavelength, and r�x� is the logarith-
mic derivative �dn�x��d�x���2n�x�. Q�v� is a spectral
function related to the reflectance. Because we are
interested in reflectance R, we require Eq. �2� to be
rewritten as

�Q���� � � 

��

��

r� x�exp��2i��x�dx� . (4)
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Substituting Eq. �1� into Eq. �4� yields the following
value for Q:

�Q���� � �r0 �
m��p

p�1 �exp��2i�
�4m � 3�v

4	0
�

� exp ��2i�
�4m � 1�v

4	0
�	� . (5)

After obtaining �Q���� from Eq. �5�, Bovard1 proposed
to calculate the reflectance differently for two cases:

Case 1: Inside the reflection band �when v is com-
plex in Eq. �3��, the expression for reflectance is

R � �exp�2�Q�� � 1
exp�2�Q�� � 1�

2

. (6)

Case 2: Outside the reflection band �when v is
real in Eq. �3��, the expression for reflectance is

R �
�Q�2

1 � �Q�2
. (7)

In the reflectance calculations above it is assumed
that the material used is nonabsorbing, such that the
sum of transmittance and reflectance is equal to
unity. The result is exact for the special case of the
quarter-wave stack.1

3. Extending the Method of Bovard to the Special
Case of Non-Quarter-Wave Stacks

We now show how both the traditional FT method2

and also the MFT of Bovard may be extended to
predict accurately the behavior of a non-quarter-
wave stack. We find that the MFT method is more
accurate than the traditional FT method for non-
quarter-wave stacks and that the MFT method is
reasonably accurate compared with the exact solu-
tion provided by the transfer matrix multiplication12

�TMM� method.
The stack again consists of two layers, H and L, of

optical thicknesses a and b. The logarithmic deriv-
ative r�x� becomes

r� x� � r0 �
m��p

p�1

(�� x � �2a � b � 2m�a � b���

� �� x � �b � 2m�a � b���). (8)

We use the traditional FT method for r�x� of Eq. �8�
to obtain the reflectance plotted in Fig. 2. Agree-
ment is poor; for example, the stop-band width pre-
dicted deviates from the exact value from TMM
method by 40%.

Encouraged by this result, we proceed to derive the
extension of MFT to the non-quarter-wave stack case.
For gratings that involve two different optical thick-
nesses, the Bragg condition is given by12

a � b � 
1�2, (9)

where a and b are the optical thicknesses of the two
layers, and 
1 is the reference wave that has the
highest reflectance. We set up an equivalent grat-
ing system with equal optical thickness such that

a1 � b1 � 
1�4. (10)

Once we convert the non-quarter-wave stack to an
equivalent quarter-wave stack, using Eqs. �9� and
�10�, we may employ wave-number correction factor v
in Eq. �3� to calculate the MFT on the equivalent
quarter-wave stack with 
1�4 thickness. Substitut-
ing Eq. �8� into Eq. �4� yields

�Q���� � � r0 �
m��p

p�1

(exp��2i���2a � b � 2m�a � b���

� exp��2i���b � 2m�a � b���)� . (11)

Fig. 1. Periodic stack consisting of N periods of alternating layers
H with high index, nh and L with low index, nl. The incident and
substrate media are assumed to have refractive index Hnh. x is
the centered double optical thickness. The special case a � b
describes the quarter-wave stack.

Fig. 2. Comparison of the reflectance of a non-quarter-wave stack
as computed by the TMM and the FT methods. The layers have
thicknesses a � 250 nm and b � 200 nm, with N � 50, nh � 1.5,
and nl � 1.4.
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We illustrate in Fig. 3 the result for a � 
0�4, b �

0�5, and 
0 � 1000 nm. The exact and MFT results
agree within 5%. The match degrades as the differ-
ence between a and b becomes larger. For a � 250
nm and b � 100 nm, the reflectance computed by the
MFT on an equivalent quarter-wave stack and by
TMM method exhibits a discrepancy of 25%, as
shown in Fig. 4.

4. Application of a Simplified Modified
Fourier-Transform Method to an Apodized Bragg
Grating

We now apply the MFT method to an apodized grat-
ing. If we denote the apodization envelope E�x�, and
the quarter-wave stack’s refractive-index profile

n� x� � C� x� � n� , (12)

where C�x� is the ac component and n� is the dc com-
ponent, which is the average refractive index, the
apodized gratings become

Napod� x� � E� x�C� x� � n� . (13)

We derived the corresponding logarithmic derivative
profile r�x� as follows:

rapod� x� � 1⁄2�ln Napod� x���

� 1⁄2 �E�� x�C� x� � E� x�C�� x�

E� x�C� x� � n� � .

�since �E� x�C� x�� ��n� �


 1⁄2 �E�� x�C� x�

n�
�

E� x�C�� x�

n� � ,

�slowly varying envelope E� x��


 1⁄2 �E� x�C�� x�

n� � . (14)

Expression �14� is of the form r�x� � e�x�c�x�—a car-
rier modulated by an envelope function—where c�x�
� C��x��2n� and e�x� � E�x�c�x� is the logarithmic
derivative of the quarter-wave stack as defined in Eq.
�1�. To calculate the reflectance of apodized gratings
we can simply compute the MFT of rapod�x� �
c�x�E�x� 7 Qapod��� to obtain the reflectance spectra
by using Eqs. �6� and �7�.

Results of this simplified MFT �SMFT� method are
given in Fig. 5, which shows a comparison of reflec-
tance spectra computed by the SMFT method, the
traditional FT method, and the recursion method on
four kinds of envelope, i.e., Hanning, Hamming,
Gaussian, and Kaiser windows. In all cases the
SMFT method is more accurate than the traditional
FT method and approaches closely �within 10%� the
exact solution.

5. Simplified Modified Fourier-Transform on Nonlinear
Gratings

Similarly to apodized gratings, nonlinear gratings
can be treated as apodized gratings whose envelopes
change with the local intensity of light within the
structure. We consider a nonlinear optical structure
proposed by Brzozowski,13 which is similar to the
structure shown schematically in Fig. 1, consisting of
alternating nonlinear materials that have opposite-
signed Kerr coefficients but equal linear indices n0.
The index of refraction can be expressed as14

n � n0 � nnlI, (15)

Fig. 3. Comparison of the reflectance of a non-quarter-wave stack
as computed by the TMM and the MFT methods. The layers have
thicknesses b � 200 nm and a � 250 nm, with N � 50, nh � 1.5,
and nl � 1.4.

Fig. 4. Comparison of the reflectance of a non-quarter-wave stack
as computed by the TMM and the MFT methods. The layers have
thicknesses b � 100 nm and a � 250 nm, with N � 50, nh � 1.5,
and nl � 1.4.
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where n0 is the linear part, nnl is the Kerr coefficient,
and I is the intensity of light in the medium. The
layers possess �nnl� of the same magnitude but with
opposite sign, and the intensity-dependent index of
refraction decreases or increases with intensity.
The average index, and therefore the spectral posi-
tion of the center of the stop band, remains fixed.
Only the width of the stop band varies. A control
beam Icontrol may be used to influence the refractive
indexes such that a low-intensity signal beam Isignal
will experience different reflectance spectra.

We choose Icontrol to have a frequency that is reso-
nant with the structural periodicity to achieve a high
degree of modulation.13 The intensity within the
structure is given by the expression

I� x� � 2I1� x� � Iout, (16)

where I1 denotes the forward-propagating wave and
is given by14

I1� x� � �1 � cos
4Ioutnnl�L � x�

�n0

2 cos
4Ioutnnl�L � x�

�n0

� Iout (17)

and where L is the total length of the structure.
The value of Icontrol is given by

Icontrol � I1�0� �
1
2 �

1

cos�4Iout

a � � 1� Iout, (18)

where a � n0�Nnnl and N � L�� is the number of
periods.

By choosing �, n0, nnl, and Iout in Eq. �17� and
substituting them into Eq. �16� we obtain the inten-
sity profile across the structure. To apply the SMFT
method we treat I�x� in Eq. �16� as an envelope func-
tion that slowly modulates the rapidly oscillating
component �nnl. This envelope function I�x� is
shown in Fig. 6. For comparison, the reflectance spec-
tra for the nonlinear structure and a linear �unapo-

Fig. 5. Comparison of apodized-grating reflectance calculated by
use of the simplified MFT, FT, and recursion �exact� methods. �a�
Hanning window, �b� Hamming window, �c� Kaiser �� � 5�, win-
dow, and �d� Gaussian window.

Fig. 6. �a� Intensity profile I�z� inside the nonlinear structure
with n0 � 1.45, nnl � 0.075, and Iout � 0.05 �top�; and �b� N � 100
periods and the corresponding refractive-index profile.

Fig. 7. Reflectance of the nonlinear grating of Fig. 6 and of a
linear grating �quarter-wave� that has n0 � 1.45 and index differ-
ence � � 0.15 as calculated with the MFT method.
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dized� structure are shown in Fig. 7. Apodization
caused by the decaying envelope in the nonlinear case
smooths the spectrum.

Finally, we note that other grating profiles such as
a Gaussian-like envelope can be synthesized by use of
an orthogonal control beam on the z or the y axis—
one whose profile is not influenced by the nonlinear
grating but that may instead be engineered deter-
ministically in transverse space.

6. Conclusions

We have introduced a simplified modified Fourier-
transform method for calculating the reflectance
spectra of an apodized grating and a non-quarter-
wave grating. We have shown the increased accu-
racy of the SMFT in the calculation of reflectance in
both linear and nonlinear gratings.
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