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Room-temperature amplified spontaneous emission at 1300 nm
in solution-processed PbS quantum-dot films
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We report room-temperature amplified spontaneous emission and spectral narrowing at infrared wavelengths

in solution-processed films made up of PbS quantum-dot nanocrystals.
amplification and lasing integrated upon a variety of substrates.

The results are relevant to optical
The active optical medium operates at room

temperature without any additional matrix material, providing an optical gain of 260 cm ! and a pump thresh-

old of 1 mJ/cm 2.

Nanocrystals synthesized in an aqueous solution and stabilized by use of short ligands

result in high quantum-dot volume fractions in solid films and in a redshift emission relative to absorption.
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Integration of light emitters, detectors, modulators,
and signal-processing elements on a single chip would
combine electronic-based computing with optical- and
radio-frequency-based communications, as follows.
An integration-enabling material should be readily
deposited onto a range of substrates through process-
ing out of solution rather than by high-temperature
epitaxy, will produce light efficiently, and will provide
optical gain for lasing at communications wavelengths
(1300-1600 nm). It will perform at and above room
temperature at which such chips will necessarily
operate.

Recent related progress includes electrolumines-
cence in PbS nanocrystals (NCs) in a polymer matrix,’
low-temperature (80 K) spectral narrowing and optical
gain in PbSe NCs in an inorganic solgel titania matrix,?
and room-temperature optical gain in PbS NCs in a
glass matrix.> Although optical gain in PbS quantum-
dot-doped glasses has been reported,? amplified spon-
taneous emission (ASE) was not demonstrated: Low
quantum-dot volume fraction, poor surface passi-
vation, and a large size distribution are the major
impediments. An approach based instead on solution-
processed NCs is highly desirable: It will permit the
combination of quantum size-effect tunability, offer
control over surfaces and their resultant electronic and
chemical interactions, and facilitate processing onto
a diversity of substrates—rigid or flexible; smooth
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130.0130, 140.3070, 250.0250, 250.4480.

or rough; flat or curved; inorganic; organic, including
biological; crystalline or amorphous; and conduct-
ing, semiconducting, or insulating. In summary, a
widely integrable lasing material requires the full
combination of infrared amplification, solution-based
fabrication, and room-temperature operation.

We demonstrate herein room-temperature obser-
vation of infrared ASE and spectral narrowing in
solution-processed quantum-dot NC films.

Achieving room-temperature infrared ASE is chal-
lenging because of the major parasitic effect of fast
nonradiative Auger recombination, which increases
exponentially with emission wavelength and tem-
perature. Population inversion for optical gain is
particularly difficult to achieve when absorption and
photoluminescence peaks overlap, as in uncoupled
quantum dots passivated by long insulating organic
(tri-n-octylphosphine oxide) and oleate* ligands.

We separated absorption and luminescence by using
short ligands for interdot coupling and redshifting
emission relative to absorption. We prepared PbS
NCs® in aqueous solutions, using thiols as stabilizing
agents. The combination of thioglycerol and dithio-
glycerol as capping agents resulted in NCs of the
best quality. A solution containing Pb(CH3COO)s,
thioglycerol, and dithioglycerol was adjusted to pH
11 by the addition of triethylamine. The synthesis
was performed at room temperature without NC
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aggregation. A solution of sodium sulfide was then
added. The molar ratio Pb:S was varied from 1:0.3
to 1:0.7. The typical concentration of NCs in solution
was 3.5 mg/ml. The system was purified by dialysis
against an aqueous triethylamine solution at pH
10. Figures 1(a) and 1(b) show x-ray diffraction
patterns and a high-resolution TEM image of PbS
NCs, respectively, revealing high crystal quality.
The x-ray diffraction pattern matches the reference
powder diffraction pattern of PbS. The crystal
structure derived from the positions of the wide-range
diffraction peaks points to cubic PbS. The average
NC size was measured with a direct convolution
profile fitting program to be 3-4 nm, confirmed
by image analysis of multiple-transmission electron
micrographs. Quantum-size-effect tuning is manifest
in photoluminescence (PL) spectra of NCs in aqueous
solution [Fig. 1(c)].

We prepared pure 2-um-thick NC films by drop cast-
ing a NC solution onto a quartz substrate. No host
material was employed. The solid volume fraction of
PbS NCs stabilized by use of the short (0.45-nm-long)
ligand molecules is 28-35%. As optical gain g™
is proportional to the concentration of nanocrystals
Nne, as 8™ ~ Nxc/[7nc(AE)ighom], Where (AE)inhom is
the inhomogeneous spectral breadth and 7y¢ is the
spontaneous lifetime, a high volume fraction is desired
for ASE.®

Figure 1(d) presents absorption and luminescence
spectra of a PbS NC film. The redshift of lumines-
cence relative to absorption results from the merging
of NC energy levels, given close packing aided by short
ligands. This three-dimensional superlattice effect is
also responsible for the less-pronounced excitonic peak,
manifested as a defined shoulder in the absorption
spectrum.

We present in Fig. 2 evidence of room-temperature
optical gain through the observation of ASE. We used
the variable stripe length (VSL) technique’ depicted
in Fig. 2(a). The thin-film sample was optically
excited by an amplified Ti:sapphire laser (~1.7 ps;
Aexe = 800 nm; pump fluence, 0.06-20 mJ/cm?). The
laser beam was focused by a cylindrical lens to form
a narrow (~25-um) stripe on the sample’s surface.
Length [ of the stripe was controlled with a variable
slit. Emission from the sample was collected from
the edge into a Peltier-cooled PbS detector. A grating
monochromator and a liquid-nitrogen-cooled Ge detec-
tor were used for spectral measurements. Thus the
VSL method is based on measurement of the emission
intensity Iasg from the sample edge as a function of
length [ of the excited region and can be described by
a one-dimensional amplifier model®:

I
IasE = ES (et — 1), (1)

where I is a constant that is proportional to the spon-
taneous emission intensity and g is the modal (i.e., net)
optical gain.

Particular care was applied to extract accurate opti-
cal gain values from VSL measurements. The central
part of the Gaussian laser beam with 8-mm-diameter

full width at half-maximum was focused by a cylin-
drical lens and used for excitation. A knife scan was
performed to ensure uniform intensity distribution.
The excitation fluence was constant over the entire

[ range. To prevent Fresnel diffraction of the pump
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Fig. 1. (a) X-ray diffraction patterns of PbS NCs, (b) high-

resolution TEM image of PbS nanoparticles, (c¢) PL spectra
of PbS in an aqueous solution with various NC diameters
from 3 to 5 nm, (d) absorption and PL spectra of a pure
PbS NC film.
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Fig. 2. (a) Experimental configuration for the VSL
method. (b) Emission intensity as a function of stripe
length for low (triangles) and high (circles) pump in-
tensities. (c) Growth of ASE compared with growth of
spontaneous PL intensity with a threshold of ~1 mdJ/cm?.
(d) Evolution of the emission spectra as a function of
pump intensity normalized at the point of the PL peak
position for 150-um excitation length. Inset, Normalized
emission spectra for low and high pump intensities (PL
and ASE, respectively). The threshold behavior and
spectral narrowing of (c) and (d) were obtained for a stripe
length of 150 um, corresponding to the maximum gain
length observed in the sample.
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beam at the slit edge we positioned the variable slit
directly upon the sample’s surface. The collection op-
tics was carefully chosen to provide constant coupling
efficiency over excitation length [. Experimental
difficulties and the applicability of the VSL method to
optical gain measurements in planar waveguides are
reviewed in detail elsewhere.® All possible experi-
mental artifacts have one distinct feature: Their
artificial VSL pseudosignature is independent of
excitation intensity. We therefore performed our
measurements over a wide range of pump intensities:
Emission intensity versus stripe length [ for low (tri-
angles) and high (circles) pump intensities is presented
in Fig. 2(b). The ASE length is limited by the optical
gain lifetime. Growth of ASE has a defined threshold
of 1 mJ/ecm? [Fig. 2(c)]. We estimate’ an optical net
modal gain coefficient g of 260 + 20 cm ™.

Figure 1(d) shows the spectrum of light emission
from the side of the NC film as pump power is in-
creased. Beyond a pump power of 1 mJ/cm?2, a new,
narrower spectral band emerges that is redshifted rela-
tive to the PL peak. The threshold behavior [Fig. 2(c)]
of the intensity in this band is observed for the 150-um
stripe length and is characteristic of ASE. Partial
overlap of absorption and luminescence bands is re-
sponsible for the red shift of the optical gain band rela-
tive to the PL peak.

We have shown what is to our knowledge the first
evidence of room-temperature amplified spontaneous
emission and spectral narrowing at infrared wave-
lengths in aqueous-solution-processed quantum-dot
NC films. These NCs are prepared at room tempera-
ture by a one-stage process with no need for organic
solvents, encapsulation, or size-selective precipitation.
The results are relevant to optical amplification and
lasing integrated upon a variety of substrates. The

active optical medium operates at room temperature
without any additional matrix material, providing
an optical gain of 260 cm™! and a pump threshold
of 1 mJ/ecm~2. NCs synthesized in aqueous solution
and stabilized by use of short ligands result in high
quantum-dot volume fractions in solid films and in
a three-dimensional superlattice effect that redshifts
emission relative to absorption.
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