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Abstract—Devices based on combinations of photonic bandgap
materials are understood intuitively in terms of the dispersion
relations of the constituent periodic and locally homogeneous
media. Quantitatively, though, photonic crystal-based devices are
analyzed using numerical simulations which take no advantage of
the a priori understanding of underlying periodic building-block
materials. Here we unite the quantitative and qualitative pictures
of photonic crystal devices and their design. We describe photonic
crystals as effective media and impose boundary conditions be-
tween photonic crystals and homogeneous materials. We express
optical field profiles as superpositions of plane waves in the ho-
mogeneous parts and propagating or decaying Bloch modes in
the crystals, connected by transmission, reflection, and diffraction
coefficients at the interfaces. We calculate waveguide modes,
coupling lengths in directional couplers, and coupling between
waveguides and point defects, achieving agreements of approxi-
mately 1% in frequencies and around 2% in quality factors. We
use the new approach to optimize waveguide properties in a for-
ward-going method, instead of the usual iterative optimizations.

Index Terms—Cavity resonators, electromagnetic scattering
by periodic structures, interface phenomena, optical directional
couplers, optical propagation in nonhomogeneous media, optical
waveguide theory, periodic structures.

I. INTRODUCTION

PHOTONIC crystal waveguides are considered one of the
main applications of two-dimensional (2-D) photonic crys-

tals. They have received significant attention, both experimen-
tally and theoretically. Since the properties of interfaces be-
tween photonic crystals and homogeneous materials are not yet
well understood, most methods to analyze the waveguides have
used fully numerical methods which produce little generaliz-
able insight into their behavior. Finite-difference time-domain
(FDTD) methods [1] predominate. Their use in design forces
the use of iterative optimization instead of direct forward design.
Other ways of understanding light in photonic crystals, such as
through bandstructures [2], are not applicable to devices that are
not infinitely periodic.

Optical field profiles within homogeneous dielectrics are
customarily and conveniently expressed in a very natural way:
propagation is described in a superposition of plane waves
which are scattered into one another at the interfaces, as en-
forced using standard boundary conditions. A similar approach
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is used in understanding meta-materials [3] in which light is
described in terms of plane waves refracted at the boundaries.
Propagation through finite-length gratings [4] and the direction
of propagation in superprism setups [5] have been analyzed
using effective parameters derived from the band structure. We
have calculated the boundary conditions at interfaces between
photonic crystals and homogeneous materials. These provide
complex reflection, transmission, and diffraction coefficients at
photonic crystal interfaces and allow us to understand photonic
crystal devices in terms of propagating or decaying Bloch
modes in the crystals and plane waves in the homogeneous
media, all connected by the boundary conditions.

Here we explore the use of the effective medium boundary
conditions in the understanding of photonic crystal waveguides
and related devices such as directional couplers. We show that
the use of boundary conditions allows us to analyze quantita-
tively the behavior of the devices in the same way in which
we have intuitively understood their behavior qualitatively. We
also show the flexibility of our method in considering a range
of structures, including situations where not all of the interfaces
are parallel.

When light is incident from a homogeneous material onto a
photonic crystal, some will be reflected, with a given amplitude
and phase, some may be diffracted back into the homogeneous
material, again with given amplitudes and phases, and some may
be transmitted, if the crystal allows it, by exciting one or more
propagating Bloch modes of the crystal. Using the boundary
conditions, we can determine these reflection, diffraction, and
transmission coefficients at photonic crystal interfaces. They are
obtained by matching the photonic crystal Bloch modes to the
plane waves of the homogeneous material, as described in the
Appendix. Complex Bloch modes [6], [7] are used if light is in-
cident on a photonic crystal in its stopband. In that case, the re-
flection and diffraction coefficients become complex, similar to
the complex Fresnel coefficients for light past the critical angle
at dielectric interfaces.

Using the reflection and diffraction coefficients allows one
to calculate the resonant mode frequencies in photonic crystal
waveguides in a simple and natural way. Light in the wave-
guide core will have a transverse wavevector component, per-
pendicular to the interfaces. The phase change induced by this
wavevector across the core plus the phase change obtained from
the complex reflection coefficients at the interfaces must pro-
duce constructive interference in order for the mode to exist.
This is a very simple condition to enforce. The reflection coef-
ficients can be calculated once for a given photonic crystal ge-
ometry and stored in a table. The remaining computations are
very fast, as will be shown below.
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In most cases of practical photonic crystal waveguides, the
core will have a high refractive index. In this case, the pho-
tonic crystal can diffract each incoming plane wave into mul-
tiple waves. A resonant mode exists when we obtain a given
mixture of plane waves that remains stationary in the guide.

Line and point defects in photonic crystals have been con-
sidered before using a plane-wave expansion in a supercell ar-
rangement and with several tight-binding treatments using Wan-
nier-like equations [8], [9]. The advantage of our method lies in
the fact that we separate the interface effects from the propaga-
tion. Hence, we can change the size of the defects without the
need to rerun simulations.

In this paper, we describe in detail the computation of guided
modes in photonic crystals, using the complex reflection and
diffraction coefficients. We start with a simple example of a
waveguide in a square lattice, with a low-index core. Next, we
present cases encountered more often in practice: waveguides
with high-index cores and triangular photonic crystals. We
then study coupling between neighboring waveguides, again
using the complex transmission, reflection, and diffraction
coefficients. We finish by analyzing the coupling of photonic
crystal waveguides to point defects.

II. GUIDED MODE CONDITIONS

We have reduced the photonic crystal to an effective medium
characterized by a complex dispersion relation and complex
diffraction coefficients at the interfaces. Here, we note that spec-
ular reflection is a special case of diffraction. We can now em-
ploy the same treatment as for dielectric waveguides. We expect
a guided mode to propagate as a superposition of plane waves
in the core and exponentially decaying waves in the claddings.
The exponential decay is given by the complex photonic crystal
modes in the stopbands, which have an imaginary Bloch vector.

As is the case with all waveguides, the propagation vector
along the waveguide must be the same throughout the structure,
and it forms the waveguide propagation constant . We find the
modes of the structure by fixing and searching for allowed
frequencies as follows.

A. Low-Index Core

We start our analysis with an air core in a square photonic
crystal of silicon rods in air. Its analysis is very simple due to
the fact that, at frequencies in the first bandgap of the structure,
the propagation vectors in the core are smaller than the Brillouin
zone of the crystal. As a result, the crystal can only reflect plane
waves. Diffraction into other waves is impossible, which allows
us to only consider one set of plane waves.

We consider the waveguide geometry shown in Fig. 1. Having
chosen a , the reflection coefficients are computed in the Ap-
pendix as a function of frequency. In the bandgap, they have unit
magnitude and a phase . The plane waves in the core will have
a transverse propagation vector given by

(1)

Fig. 1. Structure of a low-index waveguide considered.

Fig. 2. Dispersion relation of the waveguide from Fig. 1. The solid line
represents our work. The dashed line is from MPB simulations.

where is the refractive index of the core. In order to have
a resonant mode in the structure, the wave must interfere con-
structively with itself after a round-trip in the guide. We write
this condition as

(2)

where is an integer.
By repeating the above for a number of values of , we can

map the entire dispersion relation of the waveguide. In Fig. 2,
we show the dispersion relation for the structure in Fig. 1 where
the radius of the cylinders is . is the lattice con-
stant of the crystal. The computation was done for the TM po-
larization, where the electric field is parallel to the rods. The
core is obtained by removing a row of rods. We compare our
results with simulations using the MIT Photonic Bands (MPB)
package [10]. Our results agree very well with the simulations.
The small discrepancy at higher values of the propagation vector
appears because we neglected the higher order diffraction of
the plane wave at the cladding interfaces. For the low-index
core, this diffraction produces evanescent waves. However, for
larger values of the propagation constant, the evanescent decay
length increases and starts playing a more important role. By
neglecting this, we effectively assume that the field profile in
the core is a plane wave, without any periodicity induced by the
neighboring crystals. Higher order diffraction will be included
in the next subsection.
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Fig. 3. Setup used to find guided modes. The waves propagate from points A
to B and back to A.

B. High-Index Core

We now consider the case encountered more often in prac-
tice of a photonic crystal made of a triangular lattice of holes
etched in a semiconductor. The core is made of the same semi-
conductor by removing a row of holes. In this case, much larger
propagation vectors are allowed in the core, and the photonic
crystal can diffract the plane waves from a propagation vector
to . The guided mode must then contain a superposition
of all of the diffracted plane waves. In most cases encountered
in practical waveguides, there will be two or three plane waves.

We denote the amplitude and phases of the individual plane
waves by the phasors , their propagation constant along the
waveguide by , and their transverse wavevector component by

. labels the individual plane waves. Since the diffraction is
done by a photonic crystal of lattice constant , we have

, for integer values of . Equation (1) still holds.
We denote the diffraction coefficients from plane wave to
by . With this notation, represents specular reflection.
will in general not have unit magnitude any more, but the total
optical energy must be conserved among the plane waves.

We allow the waves to propagate as shown in Fig. 3, from
points to . We denote the fields at by and the fields at

by . The fields at the two points are related by the following
equations:

... (3)

This can be written in matrix form as

...
...

...

(4)

We denote the matrix above by . We obtain a similar matrix
which completes the round trip, relating the fields at point

to those at .
As before, we require that the fields after one round trip be

equal to the starting fields as follows:

...
...

(5)

which can be solved as an eigenvalue equation by requiring that
the eigenvalue of be equal to 1. If the crystals on the two
sides of the guide are identical, forming a symmetric waveguide,

Fig. 4. Interfaces between cladding and core of a waveguide in a triangular
lattice. The diffraction coefficients are computed along dashed lines.

Fig. 5. Dispersion relation of a waveguide in the triangular crystal. The lines
are from our computations. Points are from MPB.

we can work with one half round trip, requiring that the fields
at point be equal to those at for even modes or the exact
negative for odd modes. This means that the eigenvalue of
must be equal to .

We note that the eigenvalues will always have unit magnitude
for frequencies in the stopband of the crystal, since the total op-
tical energy is conserved. However, a guided mode only appears
when the eigenvalue also becomes real and conserves the phase
relationships between the plane waves.

Triangular lattices are used in the same manner as square lat-
tices. However, the unit cells of the cladding photonic crystal
are hexagonal, and the interface between the unit cells and the
waveguide core does not form a straight line any more, as shown
in Fig. 4. The computation of the diffraction coefficients is nor-
mally done at the edge of the unit cells. However, since we ex-
cite plane waves in the core, it is easier to perform the mode
matching along straight lines, such as the dashed lines in Fig. 4,
as long as they do not cross any photonic crystal holes.

In Fig. 5 we show the dispersion relation of a waveguide ob-
tained from a triangular photonic crystal of holes in a GaAs–Al-
GaAs slab waveguide with an effective index of 3.4. The holes
have a radius of 0.3 times the lattice constant. The core was ob-
tained by removing a row of holes. We use TE polarization, with
the magnetic field parallel to the holes. Again, we compare our
results with MPB simulations and obtain very good agreement.
The largest discrepancy in the guided mode frequency is 1.1%
of the bandgap width, which can be reduced by including even
higher orders of diffraction into evanescent waves. For sym-
metric guides, our method allows us to easily identify even and
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odd modes from the sign of the eigenvalue, as described above.
There is no need to analyze the mode profiles.

In the case of waveguides with semiconductor cores, most of
the time there will be two plane waves, one with and the other
with . is positive and lies in the first Brillouin
zone of the crystal, while is negative. The two plane waves
carry power in opposite directions along the waveguide. The
direction of power flow in the waveguide will be given by the
relative amplitudes of the plane waves. It should be noted that,
in the symmetric crystals studied here, we can still have modes
carrying power in the opposite direction, with negative and
in the first Brillouin zone and positive.

C. Waveguide Design

By separating the effects of the photonic crystal from the
propagation of plane waves in the waveguide core, the method
presented here is well suited to the design of waveguides. One
common problem is to find the necessary waveguide width to
achieve certain properties, such as a given phase or group ve-
locity. We show below how this problem can be solved for the
case of two plane waves in the core of a symmetric guide. In this
case, we can rewrite the mode condition from above, requiring
that eigenvalues of matrix have value as follows:

(6)

(7)

(8)

This forms essentially the dispersion relation for the waveguide.
In the above equations, the positive sign is used for even modes
and the negative for odd modes. For a given combination of
and , giving the desired phase velocity, the required waveguide
width can be found rapidly, since the diffraction coefficients

are known.
If a given group velocity is desired, (6) can be differentiated

with respect to , and the resulting equation can again be solved
for . A further differentiation would produce an equation for
the group velocity dispersion.

For the dispersion relation shown in Fig. 5, there is only one
plane wave allowed for . In this case, (6) can be
simplified even more to obtain

(9)

where is the angle of the reflection coefficient and is an
integer.

III. WAVEGUIDE COUPLING

A very important device realized using waveguides is the
directional coupler, which allows switching of light from one
arm to the other or splitting of power between two waveguides.

Fig. 6. Two guides forming the directional coupler.

It consists of two waveguides spaced closely enough such that
light can couple from one to the other over a characteristic
length, called the coupling constant. Until now, coupling be-
tween the guides has been computed by running simulations
on a cross section of the device, including many unit cells.
In this section, we present an analysis of the photonic crystal
directional coupler using the boundary conditions described
above.

We proceed in a manner similar to the one described in [11]
and compute the supermodes of the structure consisting of
the two parallel waveguides separated by a thin barrier. The
modes appear in pairs, one at a frequency slightly lower and
one slightly higher than the mode of the equivalent single-guide
structure. One of the modes will have even symmetry and the
other will have odd symmetry. The superposition of the two,
with a certain phase relationship, will concentrate all of the
energy in one guide. At the opposite phase relationship, all of
the energy will move to the other guide. The beating between
the modes, propagating with slightly different propagation
constants, produces an oscillation of energy between the two
guides.

A. Transfer Matrix Setup

We use again the interface diffraction coefficients to calculate
the supermodes. Since the structure is more complex, with four
interfaces, we organize the equations in the Appendix using the
transfer matrix method (TMM) [12]. Traditionally, the TMM
is used with a single allowed wave in each direction. Here, we
use multiple waves, as required by our structures with multiple
plane waves and multiple Bloch modes.

The waveguide structure to be solved is shown in Fig. 6. Vec-
tors and , representing the fields at points and , are
related by the following matrix product:

(10)

(11)

where and are the propagation matrices for
the two cores and the barrier, while the other matrices in (10)
describe the interfaces. All matrices are calculated in the Ap-
pendix. Guided modes of this structure must not have waves
propagating to the right at point and to the left at . This
means that the determinant of the top-left corner of matrix
must be zero.

We note that this TMM treatment could also be applied to
the simple waveguides considered in the previous section. The
results would be equivalent.
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Fig. 7. Profiles of even mode (solid line) and odd mode (dashed line) in the
directional coupler. The vertical lines mark the positions of the cores.

B. Coupling Constants and Power Transfer

Using the TMM and the boundary conditions, we compute
the two closely spaced mode propagation constants and profiles
of the directional coupler.

As an example, we consider the waveguides from the pre-
vious section, using the triangular photonic crystal. The cores
are formed by removing a row of holes, and the barrier between
the guides is made of three rows of holes. The supermodes of
the coupler will be close to those described by the dispersion re-
lation in Fig. 5. We choose to work in the single-mode region of
that graph, at a frequency of and a propagation vector
near . We obtain for the supermodes of the coupler
the propagation vectors and . The
mode frequencies agree with full simulations to within better
than 0.5% of the stopband. As described in [11], we obtain a
beat length between the modes of

(12)

corresponding to a coupling length equal to 32 lattice constants.
In Fig. 7, we show the profiles of the two supermodes. The

phase of the modes was chosen such that their imaginary part
vanishes in the cores. We show the real part of the modes. In the
photonic crystal, we only show the propagating and decaying
parts of the Bloch modes. To obtain the true electric field profile,
this should be multiplied by the periodic part of the Bloch mode.

When light is launched into one of the two guides, it will
excite a superposition of the even and odd modes. Through their
beating, these modes will concentrate the light alternatively in
each guide. Fig. 8 shows the magnitude of the superposition,
when the light is concentrated in the left guide. The dashed line
shows the mode profile of the left guide, if there was no guide
on the right. We see that the energy in the guide on the right is
almost the same as the energy in the tail of the mode from the
guide on the left, if there was no guide on the right. This shows
that complete power transfer is possible between the guides.

IV. COUPLING TO POINT DEFECTS

The complex reflection coefficients can be used to accurately
compute the resonant modes of point defects. In this section, we

Fig. 8. Superposition of even and odd modes (solid line). Mode of a single
guide (dashed line). Inset shows the superposition in the core on the right.

Fig. 9. Point defect and waveguide arrangement.

investigate the coupling between a point defect and a waveguide
located nearby [13], as illustrated in Fig. 9. Light will couple
from the waveguide to the defect, where it can resonate if it has
the right frequency. At resonance, high light intensities will ac-
cumulate in the defect and light in the waveguide will be re-
flected. Away from resonance, the defect will have a very small
effect on the waveguide.

The complex reflection coefficients can be used to calculate
the coupling of light into the defect and the overall behavior
of the waveguide. Here, we choose a waveguide with a low-
index core and a low-index cavity. Such structures have recently
been fabricated and demonstrated to provide useful photonic
crystal properties [14]. The coupling coefficient is given by
the transfer matrix for light crossing from the guide to the defect

(13)

(14)

The coupling is usually quite small, since the light must tra-
verse a few photonic crystal layers. As is usually done with
Fabry–Perot interferometers, we compute the transmittance and
reflectance of light in the waveguide through an infinite sum of
light resonating in the defect. The reflectance and transmit-
tance are

(15)
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Fig. 10. Reflection and transmission in the waveguide due to defect. The lower
axis is for our work, and the upper axis is for FDTD simulations.

(16)

(17)

where and are the propagation constants in the defect,
and are the dimensions of the defect, and and are

the complex reflection coefficients from the defect walls; they
have unit magnitude. represents the fraction of the
power that does not couple from the defect to the waveguide.

Fig. 10 shows the transmittance and reflectance spectra for
light in the waveguide. The results have been compared with
FDTD simulations. The position of the resonance agrees to
within 0.8%, while its quality factor agrees within 2.4%. This
disagreement is due to the numerical errors produced by FDTD
when dealing with cavities with such long lifetimes. Since the
quality factor is very high, we have used two horizontal axes in
the figure in order to be able to show the details of the spectral
features.

While in the above numerical examples we have used two-
dimensional (2-D) photonic crystals for simplicity, our method
is equally well suited for three-dimensional photonic crystals
and for the study of 2-D photonic crystal structures etched in
slab waveguides.

V. CONCLUSION

We have analyzed photonic crystal waveguides by separating
the photonic crystal dielectric profile from the effects of the
larger structure. This approach could accelerate the design of
2-D photonic crystal-based devices considerably. Moreover, the
diffraction coefficients can be computed ahead of time, stored
in a table, and distributed easily. The remaining steps do not
require complex simulation packages. This has the potential
of opening up the design of photonic crystal devices to those
who do not have complex tools available, especially since our
methods are close to the way we think intuitively about light in
photonic crystals. Optimization of the devices is also acceler-
ated, since the complexity of the structure is reduced consider-
ably when introducing the effective media.

APPENDIX

REFLECTION COEFFICIENTS AND TRANSFER MATRICES

In this Appendix, we compute the boundary conditions and
then set up the transfer matrices used above. We are interested
in finding the Bloch modes excited in a crystal by an incoming
wave, as well as the waves diffracted back into the homogeneous
material. At the interface, we enforce the usual electromagnetic
boundary conditions of continuity of the electric and magnetic
fields. To achieve this, we decompose the Bloch modes in the
plane of the interface into a 2-D Fourier series and match each
Fourier component of all Bloch modes in the crystal to the cor-
responding diffraction order of the plane waves on the homoge-
neous side. When calculating the reflection and diffraction co-
efficients from the stopband of a crystal, the complex or non-
propagating [6], [7] Bloch modes must be used.

Working with the magnetic fields for TE polarization, the di-
electric boundary conditions are

(18)

(19)

where the terms on the left-hand side of the equations denote the
values in the homogeneous region, while on the right-hand side
we have the photonic crystal values. and represent the
amplitudes of the plane waves propagating to the right, toward
the interface , and to the left, away from the interface ,
with lateral propagation constant . On the right-hand side,

numbers the modes, and and are Bloch modes
propagating to the right and left, respectively. represents
the th Fourier component of mode , corresponding to a lateral
propagation vector . represents the first derivative with
respect to of the Bloch mode Fourier components. and
are the dielectric constants on the two sides of the interface. The
above equations should be repeated for all diffraction orders and
include all Bloch modes, both propagating and decaying, at a
given frequency. In practice, however, we keep a small number
of diffracted waves and Bloch modes.

Using the above equations, the reflection and diffraction co-
efficients are readily obtained. For example, the reflection coef-
ficient is given by . For the more complex struc-
tures in Section III, we rewrite the above equations in matrix
form, to be able to use them with the TMM. For this illustra-
tion, we include only two diffraction orders. This is usually suf-
ficient for crystals fabricated in semiconductor slab waveguides,
where higher diffraction orders produce evanescent waves. The
matrices are

(20)
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where we have used the following properties of the modes:
and . We rewrite the above equation

as

(21)

where the vectors and denote the complex field ampli-
tudes on the homogeneous and periodic sides of the interface.
We then obtain the following matrices for scattering by an in-
terface:

(22)

(23)

For propagation inside a homogeneous material or photonic
crystal, the fields on the left- and right-hand sides are related by
the following matrix equation:

(24)

where the vectors and represent the fields on the left
and right of the region, respectively, and represents the
component of the propagation vector in the homogeneous region
or the possibly complex Bloch wavevector in the crystal.
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