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Germanium silicon oxide achieves multi-
coloured ultra-long phosphorescence and
delayed fluorescence at high temperature

Huai Chen1,3, Mingyang Wei 2,3, Yantao He1, Jehad Abed 2, Sam Teale 2,
Edward H. Sargent 2 & Zhenyu Yang 1

Colour-tuned phosphors are promising for advanced security applications
such as multi-modal anti-counterfeiting and data encryption. The practical
adoption of colour-tuned phosphors requires thesematerials to be responsive
to multiple stimuli (e.g., excitation wavelength, excitation waveform, and
temperature) and exhibit excellent materials stability simultaneously. Here we
report germanium silicon oxide (GSO) – a heavy-metal-free inorganic phos-
phor – that exhibits colour-tuned ultra-long phosphorescence and delayed
fluorescence across a broad temperature range (300 – 500K) in air. We
developed a sol-gel processing strategy to prepare amorphous oxides con-
taining homogeneously dispersed Si andGe atoms. The co-existence of Ge and
Si luminescent centres (LC) leads to an excitation-dependent luminescence
change across the UV-to-visible region. GSO exhibits Si LC-related ultra-long
phosphorescence at room-temperature and thermally activated delayed
fluorescence at temperatures as high as 573 K. This long-lived PL is sensitized
via the energy transfer from Ge defects to Si LCs, which provides PL lifetime
tunability for GSO phosphors. The oxide scaffold of GSO offers 500-day
materials stability in air; and 1-week stability in strong acidic and basic solu-
tions. Using GSO/polymer hybrids, we demonstrated colour-tuned security
tags whose emission wavelength and lifetime can be controlled via the exci-
tation wavelength, and temperature, indicating promise in security
applications.

Colour-tuned phosphors are luminescent materials whose photo-
luminescence (PL) properties (emission colour, intensity, and PL life-
time) are responsive to external stimuli such as excitation wavelength,
waveform, power intensity, and temperature1–4. Colour-tuned phos-
phors have potential applications in high security-level anti-counter-
feiting and data storage/encryption5–7. The anti-counterfeiting marks
made with colour-tuned phosphors show variable optical responses
under external stimuli, therefore less likely to be copied using con-
ventional security phosphors8,9. Tunable PL properties of colour-tuned

phosphors provide multi-dimensional optical codes to store sensitive
information, an approach that offers the potential to improve encod-
ing capacity in optical data encryption10.

Recently, organic colour-tuned phosphors have attracted interest
in viewof their versatility inmoleculardesign and their non-relianceon
toxic metal ion activators1,6,11. This has brought new application
opportunities in security applications. However, the practical appli-
cation of organic colour-tuned phosphors is impeded by their lack of
long-lasting durability under a range of relevant environmental
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conditions (Supplementary Table 1), since their organic backbones
exhibit limited resistance to heat, humidity, and oxidation12–16.

Inorganic colour-tuned phosphors are well-suited to practical
application in light of their high materials stability. Inorganic phos-
phors—including heavy-metal-doped inorganic phosphors and colloi-
dal quantum dots—have been engineered to display colour-tuned
fluorescence and phosphorescence17–21. Their luminescent properties
are controlled by excitation wavelength, power intensity, and
temperature22–25. Until now, though, inorganic colour-tuned phos-
phors have yet to report stability against moisture and thermally
induced degradation26,27.

Silica (SiO2) provides robust silicon-oxygen bonds and thus is well
suited to serve as a protective host for both inorganic and organic
phosphors21,28. Employing a rigid silica scaffold overcomes the thermal
quenching of excitons, stabilizing photoluminescence at high
temperatures21. Silica has also been considered an attractive phosphor
in light of its Si-defect-related luminescence29. However, there has
been no demonstration of colour-tuned luminescence by engineering
the Si defects for silica phosphors, nor has the expected thermal sta-
bility been thoroughly investigated. This we assign to limited control
over defect formation in silica phosphors30.

Here we incorporated Ge into an amorphous silica scaffold to
produce a material containing multiple luminescent centres (LCs)
which allowedus to unite stabilitywith colour-tuned luminescence31–34.
We developed a sol-gel-based materials processing strategy to intro-
duce, in an anatomically homogeneous fashion, Ge atoms to form
germanium silicon oxides (GSO). By implementing the selective exci-
tation of LCs, we tuned the emission colour of GSO across the blue-to-
yellow visible light region.We found energy transfer betweenGe and Si
defect states stabilizes the phosphorescence lifetime of GSO to a long
0.6 s at room temperature. We observed thermally activated delayed
fluorescence (TADF) at high temperatures (300–500K) in GSO, lead-
ing to temperature-dependent colour tuning. The luminescence fea-
tures of GSO have no observable changes the following storage under
ambient conditions for over 500 days, and they exhibit good stability
against acidic or base solutions. We fabricated multi-mode anti-coun-
terfeiting patterns using GSO and demonstrated tri-modal optical
encryption by combining GSO with pristine silica phosphors. The
results indicate the potential of GSO as a stable, heavy-metal-free
security phosphor with multi-dimensional colour tunability.

Results and discussion
Excitation-wavelength-dependent colour tuning in GSO
The excitation wavelength is commonly used to tune the photo-
luminescence (PL) properties of colour-tuned phosphors1,6,9,12. Typi-
cally, colour-tuned phosphors contain multiple LCs with distinct
excitation bands24. Excitation-wavelength can therefore selectively
control the excitation of LCs, changing the emission colour and PL
lifetime accordingly.

We sought to design oxide phosphors with multiple, distinct LCs.
We reasoned that pristine silica phosphors are unlikely to achieve this
goal: Si LCs are generated under specific synthesis conditions
(including temperature, atmosphere, and precursors), and this limits
the coexistence of multiple Si LCs21. Ge oxygen-deficient centres
(GeODC(II)) can be easily formed under various conditions in
germanosilicate35. When GeODC(II) and Si LCs with distinguishable PL
properties coexist compatibly within GSO, the emission of GSO can
potentially be tuned using different excitationwavelengths (Fig. 1a, b).
This constitutes the basis for colour-tuned security applications.

Here, GSO was synthesized by homogeneously mixing tetra-
methoxygermanium (TEOG) and tetramethoxysilane (TMOS) in the
sol-gel precursors and subsequent thermal annealing under an Ar/H2

atmosphere. Inductively coupled plasma-atomic emission spectro-
metry (ICP-AES) shows that the Ge content in GSO is 5.2 ± 0.2wt%.
Energy-dispersive X-ray spectroscopy (EDS) mapping further shows

that the Ge element was distributed uniformly within GSO powders
(Supplementary Fig. 1). The crystallinity and local elemental environ-
ment of the as-synthesized GSO were investigated using powder X-ray
diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and X-ray
absorption spectroscopy (XAS). No crystalline feature is seen in PXRD
either before or after annealing, indicating an amorphous crystalline
structure (Supplementary Fig. 2). From XPS, we rule out the formation
of silicon or germanium nanoparticles since no signal from elemental
silicon or germanium (i.e., Si0 and Ge0) is observed (Fig. 1c). Scanning
electronmicroscope (SEM) image of GSO samples further confirm that
they are bulk powders (Supplementary Fig. 1). In the XAS spectra,
characteristic SiO2- and GeO2-like signals are already present in the Si
K-edge and Ge L-edge, respectively for the sol-gel precursors, while
thermal annealing induces negligible local environment changes to Si
and Ge atoms (Supplementary Fig. 3). Taking these results in combi-
nation, we conclude that the GSO is an amorphous germanosilicate,
with Ge and Si LCs homogenously mixed even following thermal
annealing.

To investigate the colour tunability of GSO, excitation-emission
matrix (EEM) measurements were carried out for both GSO and pris-
tine silica (Figs. 2a, b). Two PL species are identified in the EEM spectra
of GSO: a narrowband PL centred at 395 nm and a broadband PL ran-
ging from 400nm and 800 nm. The narrowband PL—absent from the
EEM spectra of undoped silica—corresponds to an excitation around
250nm with a PL lifetime of 110 μs, which are phosphorescence
characteristics of GeODC(II)36 (Fig. 2b, Supplementary Fig. 4). The
broadband PL is observed both in GSO and undoped silica with con-
sistent PL features (Fig. 2c). We attribute the narrowband PL to
GeODC(II) and broadband PL to Si-related LCs, respectively. This evi-
dence shows that GSO containsmultiple LCs, which enables excitation
wavelength-dependent colour tuning.

Colour-tuned PL is demonstrated in GSO through the selective
excitation of different LCs: since the excitation spectra of narrowband
PL and broadband PL exhibit small overlap, the violet PL from GeOD-
C(II) dominates the PL spectra for the excitationwavelengths from 220
to 280 nm (Fig. 2d); In comparison, the white-coloured PL from Si LCs
becomes prominent in the PL spectra resulting from an excitation
wavelength of around 300 nm and 360nm (Fig. 2e). The PL peak
wavelength is thereby shifted by about 130 nm (from 395 nm to
525 nm) for GSO using excitation wavelength tuning. This apparent
emission colour change is favourable for security applications, as it
allows the reliable readout of encrypted information by the naked
eyes37.

Varying annealing temperatures (550–900 °C) during synthesis
enabled us to further engineer silica LCs in GSOs (Fig. 1d): PL can be
shifted for annealing temperatures from 550oC to 900oC under UV
illumination (Fig. 2f and Supplementary Fig. 5), while diminished for an
annealing temperature above 900 °C. The engineered local structure
of silica LCs was directly evidenced in the electron paramagnetic
resonance (EPR) spectra (Supplementary Fig. 6, Supplementary
Table 2, and SupplementaryNote 1),while PXRDand Fourier transform
infrared spectroscopy (FTIR) analyses reveal that GSOs preserved the
amorphous crystalline structure at different annealing temperatures
(Supplementary Fig. 7). In addition, we observed a PL wavelength shift
for this emission band following Ge incorporation. By tracking the PL
spectra of GSOs as a function of Ge concentration (Supplementary
Fig. 8), we found this wavelength shift is continuous, a finding we
attribute to the local structure change in LCsupon the incorporationof
Ge (Supplementary Fig. 9).

PL lifetime-tuning via the introduction of Ge
We found the presence of Ge stabilizes the otherwise short-lived
phosphorescence from Si LCs. This enables PL lifetime-tuning in GSO
and pristine silica: After switching off a 365 nm light illumination,
yellow-coloured afterglow can be observed by the naked eye from
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800oC-annealed GSO (Fig. 3a, Supplementary Movie 1), while no
detectable afterglow is observed from pristine silica and GSOs
annealed at other temperatures.

The afterglowproperties ofGSOwere studiedusing time-resolved
emission spectroscopy (TRES). As seen in Fig. 3b, a slow decay in
intensity is apparent after removing the excitation source. We fit the
slow decay curves with a biexponential function and obtained a PL
lifetime of 0.58 s for the 525 nm emission, which is comparable with
that of ultra-long organic phosphorescence7,12,13(UOP, Fig. 3c). Com-
paring the time-resolved PL profiles (Fig. 3d) and steady-state PL
spectra (Fig. 2c), we further confirm that this yellow (peaks at 525, 570
and 620nm) long-lived emission is stabilized ultra-long phosphores-
cence (UP) from Si LCs.

To examine themechanismofUP stabilization forGSO,we carried
out temperature-dependent PL measurements from 140K to 300K.
The slight thermal quenching resulted in a minor decrease in intensity
in temperature-dependent PL spectra (Fig. 3e) andnegligible change in
PL lifetime (Fig. 3f and Supplementary Fig. 10). Therefore, we rule out
thermal-activated electron de-trapping—usually observed in Ce3+-
doped inorganic phosphors—as the mechanism of UP stabilization
for GSO25.

Time-resolved excitation spectra of GSO reveal that UP is gener-
ated upon excitation at 310 nm (Fig. 3g). We found that this coincides
with one of the excitation bands of Si LCs as seen in EEM spectra
(Fig. 2a). This excitation band—negligible in the EEM spectra of

undoped silica (Fig. 2b)—is introduced upon Ge incorporation. The
intrinsic excitation band of Si LCs does not generate UP and exhibits
weaker excitation intensity thandoes the 310 nmband inGSO (Fig. 2a).
From these findings, we offer that Ge incorporation introduces new
defect states that sensitize Si LCs, while pristine silica does not emit
long-lived PL because of the lack of Si LC sensitization (Fig. 3b). The
mechanism we present here is akin to the sensitizer-activator co-
doping effect in lanthanide-doped inorganic phosphors38.

To investigate this mechanism of UP stabilization, we carried out
EEM measurements on GSOs with varied Ge concentrations (Supple-
mentary Fig. 11). We found that the 310-nm extrinsic excitation band
wasobservedonlywith aGeconcentrationof 1:20. This corresponds to
the coexistence of Si- and Ge-related paramagnetic defects exclusively
at the same doping level (Supplementary Fig. 12, Supplementary
Table 3). We conclude that the extrinsic excitation band is related to
energy transfer among defects. When we vary the annealing atmo-
sphere of GSOs, we find evidence that Si- and Ge-related paramagnetic
defects are H(I) and H(II) centres, respectively, since they are created
only under a mixed H2/Ar atmosphere (Supplementary Fig. 13, 14)39.
Detailed discussions about the EPR results are available in Supple-
mentary Note 1.

UP from GSO exhibits excellent stability against oxygen- and
moisture-induced degradation: no obvious phosphorescence lifetime
changed after over 500 days of storage in air (Supplementary Fig. 15)
and after over 7 days of immersion in strongly acidic and basic
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solutions (Supplementary Fig. 16). These significantly exceed the sta-
bility level of UOP and are ideal for security printing on banknotes and
trademarks, which require air and water stability37.

Temperature-dependent colour tuning in GSO
Thermalquenching limits thephosphorescence lifetimeofUOPat high
temperatures. However, GSO may overcome this issue, as the rigid
oxide scaffold is expected to reduce thermally induced nonradiative
recombination27,28. Temperature can also act as an external stimulus
for colour-tuned phosphors40. We sought therefore to study the PL
properties of GSO at elevated temperatures.

We noticed that the fluorescent blue-band PL (i.e., 400-500nm) is
thermally activated at high temperatures (300–500K), as evidenced
by the enhanced PL intensity, the prolonged PL lifetime, and the
increased ratio of the long component decay in the total PL decay
(Fig. 4a–c). Notably, the PL lifetime at 433 nm can reach amaximumof
0.59 s at a high temperature of 380K, similar to the longest phos-
phorescence lifetime (0.58 s) at room temperature (Fig. 4b). Combin-
ing these results, we reason that the blue-band afterglow at high
temperatures is derived fromthermally activateddelayedfluorescence
(TADF)41,42. This is generated via reverse intersystem crossing (RISC)
from triplet states to singlet states at the silica LCs, with the aid of
thermal energy (Fig. 4d).

Thermally induced PL quenching is instead observed (viz. phos-
phorescent yellow-band PL, i.e., PL at 500–600nm): both the PL
intensity and phosphorescence lifetime are decreased at elevated
temperatures (Fig. 4a, b). Despite the existence of thermal quenching,
the phosphorescence lifetime at 525 nm is still up to 0.30 s at tem-
peratures as high as 420K, at whichUOP is diminished inmost organic
phosphors12 (Fig. 4b). This indicates the effectiveness of UP stabiliza-
tion by the rigid silica scaffold.

As a result of the relative intensity change between fluorescence
and phosphorescence at elevated temperatures, the emission colour
of GSO shifts progressively from (0.360, 0.389) at 300K to (0.283,
0.253) at 500K in the CIE 1931 chromaticity diagram (Fig. 4e, f).
Therefore, the temperature can be used as an external stimulus for
colour-tuning GSO.

Multimodal anti-counterfeiting and information encryption
As GSO combines excitation wavelength-dependent colour tuning, PL
lifetime-tuning, and temperature-dependent colour tuning simulta-
neously, it is an ideal security phosphor for multimodal anti-
counterfeiting and information encryption.

We fabricated anti-counterfeiting marks by drop-casting GSO/
polystyrene (PS) hybrid ink on a patterned silicon wafer (Fig. 5a). Tri-
modal anti-counterfeiting was demonstrated for GSO/PS-based
security printing (Fig. 5b, c):When switching the excitationwavelength
from 254nm to 365 nm, the emission colour of the anti-counterfeiting
patterns is changed from blue to white, as a result of the excitation
wavelength-dependent colour tuning in GSO; When turning off the
365 nm UV light illumination, the yellow coloured afterglow emerged
due to the stabilization of UP (Fig. 5b); When increasing the tempera-
ture from 333 K to 573 K, the emission colour of the afterglow shifted
from yellow to blue progressively due to TADF (Fig. 5c).

We further demonstratedmulti-modal information encryption by
combining GSO and pristine SiO2 phosphors. As seen in Fig. 5d, a
digital number pattern was prepared by arranging GSO and pristine
phosphors at different locations. Two types of GSO were employed:
800 oC-annealed GSO (Sample III) which exhibits excitation
wavelength-dependent colour tunability, and 900oC-annealed GSO
(Sample II) which only emits PL fromGeODC(II). Using this pattern, we
achieved tri-modal data encryption in response to excitation
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wavelength, excitation on/off, and temperature, respectively (Fig. 5e).
Under the mode of excitation wavelength-encoding, the number “59”
is displayed using 254 nm illumination (PL from the Sample I and II),
while the number “86” is displayed under 365 nm illumination (PL from
the Sample I and pristine silica) (Fig. 5f). Under PL lifetime-encoding,
the number “86” is changed to “55” after switching off the excitation
source since only the sample I exhibits UP. However, as both Sample I
and pristine silica exhibit TADF, when excitation is removed at 573 K
the number “86” is visible rather than the number “55” observed at
300K under the temperature-encoding mode (Fig. 5g). This demon-
stration confirms the encoding capacity of GSO in combination with
pristine silica by harnessing multi-dimensional colour tunability.

It is noted the high temperature and short excitation wavelength
used to reveal the sensitive informationmayalso causepotential safety
concerns in the practical application43. Since GSO exhibits
temperature-dependent colour tunability from 300K to 500K, one
can select actual operating temperatures in such a way as to avoid fire
hazards. Users should also be aware of health risks associated with the
short excitation wavelength, and the use of an enclosure for illumi-
nation should be evaluated with this in mind.

This work demonstrates GSO as a new inorganic colour-tuned
phosphor with ultra-long phosphorescence and delayed fluorescence
over a broad temperature range. The colour-tuned emission across the

UV and visible light region was achieved by the selective excitation of
Ge and Si luminescent centres. Energy transfer between Ge and Si
defects stabilized the ultra-long phosphorescence up to 0.58 s at room
temperature. Thermally activated delayed fluorescence was further
demonstrated in GSO at high temperatures (300–500K). GSO exhib-
ited over 500-day air-storage stability, 7-day water stability in strong
acid/base solution, and robust thermal stability at temperatures up to
573 K. With GSO-based security inks, we produced high security-level
anti-counterfeiting tags that exhibit a tri-modal optical response. We
also demonstrated tri-modal data encryption using GSO and pristine
silica phosphors. These new findings indicate the great potential of
GSO as stable and non-toxic colour-tuned phosphors for advanced
security applications.

Method
Materials
All chemicals used are commercially available and were used without
any additional purification steps: tetramethoxysilane (TMOS, 98%),
tetraethoxysilane (TEOS, 98%), nitric acid (36%), sodium hydroxide
(98%), tetrahydrofuran (AR), styrene (98%) and anthracene-9,10-diyl-
bis-methylmalonate (ADMA, 95%) were purchased from Aladdin Che-
mical Inc.; tetramethoxygermanium (TEOG, 98%) was purchased from
Gelest Inc.
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tation spectra of GSO obtained at 300K by monitoring the emission feature
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Solid-state synthesis of GSO and the control sample SiO2

9.3 g of TMOS (60mmol) and 0.76 g of TEOG (3.0mmol) were added
into a 100-mL Schlenk flask equipped with a magnetic stirring bar.
10mL of 90mMHNO3 and 10mL of methanol were added to the flask
withmechanical stirring at room temperature under constant nitrogen
flow to initiate the sol-gel reaction. The solution gradually became
white and cloudy within 5min, and the reaction was maintained at
room temperature for 24 h. After that, the white, gel-like product was
isolated from the solution by vacuum filtration and subsequently dried
under vacuum at room temperature for 16 h. After the drying process,
the powder-like product was transferred to a 20-mL glass vial and
stored in ambient conditions for further use.

2 g of the powders were then placed in a quartz reaction boat and
transferred to a high-temperature tube furnace (Lindberg). The sample
was heated from ambient to the pre-designed peak temperatures (550,
700, 800, and 900 °C) at 18oC/min in a slightly reducing atmosphere
(5% H2 + 95% Ar). The sample was maintained at the processing tem-
perature for 5 h and then naturally cooled down to room temperature.
The resulting amber solid was ground using mortar and pestle and
subsequently ground mechanically using a ball milling grinder (MSK-
SFM-LN-192, MTI KJ Co., Ltd. frequency = 50Hz, operating time = 3 h)
to yield a fine greyish GSO powder. The control sample SiO2 was pre-
pared following the same procedure as GSO except for the addition of
TEOG. All of the products were transferred to 20-mL glass vials for
storage in an ambient environment.

Photoluminescence (PL) measurements
The photoluminescence excitation spectra (PLE) and temperature-
dependent PL spectra of the GSO powdery samples were recorded
using an FLS 980 spectrometer (Edinburgh Instruments) equipped
with an alternating temperature module. A 450W Xe lamp served as a

continuous-wave light source in steady-state PL measurements. The
excitation-emission matrix (EEM) PL spectra of GSO were recorded by
a Horiba Duetta fluorometer. The temperature-dependent PL lifetime
profiles and Time-resolved emission spectroscopy (TRES) of the sam-
ples were recorded by Edinburgh FLS 920 spectrophotometer equip-
ped with a 150W nF900 flash lamp.

Powder x-ray diffraction (PXRD) and x-ray photoelectron spec-
troscopy (XPS) measurements
PXRD patterns were collected with a Rigaku Smart Lab diffractometer
(Bragg-Brentano geometry, Cu Kα1 radiation, λ = 1.54056Å). The
spectrawere generated from scans between 2θ ranges of 10°–80° with
the integration of 600 s. XPS results were obtained using a VG Scien-
tific ESCALAB 250 instrument, Thermo Fisher Scientific. CasaXPS
software (VAMAS) was used to interpret high-resolution results. All
spectra were internally calibrated to the C 1s emission (284.8 eV).

X-ray absorption near-edge structure (XANES) analysis
The XAS Ge L-edge and Si K-edge spectra were measured using SGM
(11ID-1) beamline at theCanadianLight Source (CLS). The sampleswere
prepared by spreading a thin layer of powder on a piece of conductive
carbon tape which was placed on a metallic holder. All measurements
were taken at room temperature in the fluorescence mode using four
Amptek silicon drift detectors (SDDs) simultaneously. The XAS for
each sample was measured 10 times at different spots on the sample
(0.1mm separation) and then averaged. Data post-processing and fit-
ting were done entirely using the Demeter software package44.

Electron paramagnetic resonance (EPR) measurements
All EPR data was processed by continuous-wave (X-band EPR mea-
surements on powdery samples (50mg) which were recorded with a
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Bruker E500 spectrometer using a Bruker super-high Q cavity. The
measurements were carried out at room temperature with a modula-
tion frequency of 100 kHz, modulation amplitude of 0.01 mT, and a
microwave power of 0.2mW (30dB) under non-saturating conditions.

Anti-counterfeiting pattern preparation and tests
The pattern was pre-designed and made on plastic tape. The pattern
was then transferred onto a piece of silicon wafer (3 cm * 3 cm,

Guangzhou Lige technology co. LTD), and the rest of the tape was
removed. 500mg of ground GSO powder was dispersed in 10mL of
oligomeric styrene by mechanical stirring in the air at room tempera-
ture for 30min, yielding a highly viscous suspension. The resulting
suspension was subsequently drop-cast onto the pattern/silicon wafer
and then dried in air at room temperature for 6 h. To test the lumi-
nescence behaviour, the film was irradiated by a 365 nm ultraviolet
light source (5W) in the air at various temperatures. For the
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Fig. 5 | Security applications of colour-tuned GSO. a GSO patterning process by
polymer encapsulation. b Anti-counterfeiting label demonstration with excitation-
wavelength-dependent security features. PL wavelength and lifetime from the label
are different using 254nm and 365 nm excitation, respectively. (Scale bar = 1 cm).
c Temperature-responsive security demonstration. The afterglow colour of the
anti-counterfeiting label is tuned by varying the temperature from 333K to 573 K.
Photographs were all taken 1 s after the excitation (λex = 365 nm) was switched off.
d Schematic of the encryption pattern design. Different oxide-based phosphors
were selectively deposited on the pre-designed pattern (blue: pristine SiO2; yellow:

Sample III; violet: Sample IV, scale bar=0.5 cm).eTriple-modedecodingprocess on
colour-tuned GSO. By tuning the excitation wavelength and temperature, the pat-
tern can display different digital numbers. f Demonstration of excitation-
wavelength-responsive encoding. The numbers “59” and “86” are displayed under
254 and 365 nm, respectively. g Demonstration of temperature-responsive
encoding. The yellow-coloured number “55” and the blue-coloured number “86”
are displayed at 298 and 573 K, respectively, after removing the 365 nm
illumination.
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demonstration of temperature-responsive encoding, the sampleswere
placed on a hot plate with various temperatures whichwere calibrated
using an infrared thermometer. (Caution: the usage of UV light could
possibly cause biological damage. The high-temperature annealing
and the UV-irradiation processes should be operated in the fumehood
with proper personal protective equipment).

Data availability
The data that support the findings of this study are available in the
following repository: https://doi.org/10.6084/m9.figshare.19859869.v1.
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