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ABSTRACT: Metal halide perovskite absorbers with wide bandgaps
(1.6−1.7 eV) that are suitable for tandem devices typically require
high Br concentrations; this renders the material prone to halide
segregation and degradation. Inorganic, bromine-free CsPbI3 has a
wide bandgap of 1.7 eV and does not suffer from halide segregation;
however, these active layers are not stable at room temperature.
Here, we report a method to create stable tetragonal perovskites
with a bandgap near 1.7 eV: we add small amounts of large A-site
cations having ionic radii between 272 and 278 pmdimethylam-
monium (DMA) and guanidinium (Gua)into the crystal lattice.
When we deploy perovskites using mixed Cs and these large organic
cations, we achieve stable, wide bandgap perovskites with power
conversion efficiencies of 15.2% and VOC of 1.19 V. This study extends materials selection for wide bandgap Cs-based
perovskites.

Metal halide perovskites have attracted attention
because of their application in low-cost, high-
efficiency photovoltaics.1 To make tandem solar

cells with Si, a perovskite bandgap of 1.7 eV is optimal,2 but
usually requires compositions that contain 30−40% bromine
(such as MAPbI0.6Br0.4 and CsFAMAI0.6Br0.4).

3−5 These
compositions undergo I−Br phase segregation, lowering device
stability and efficiency.6

To overcome halide segregation, it is desirable to minimize
the Br concentration, but this lowers the bandgap to values
that are suboptimal for tandem solar cells. Fully inorganic
perovskites that use only iodine in their composition, such as
CsPbI3, can achieve wide bandgaps, but are not phase stable.7

For stable CsFA and CsMA mixtures, the ratio of Cs cannot
exceed 30%, and the resulting compositions exhibit smaller
bandgaps.8 Because of the small radius of the Cs+ ion, larger
cations are needed to stabilize perovskite structures with Cs
concentrations exceeding 30%. To maintain both a wide
bandgap and phase stability in bromine-free perovskites, a
lower concentration of larger organic cations is needed.
Here, we report bromine-free perovskites with bandgaps

near 1.7 eV. We demonstrate that, by using A-site cations with
ionic radii between 272 and 278 pmDMA and Guawe are
able to create perovskites that are phase-stable at room

temperature. Compared to conventional cubic CsMAFA
perovskites, we find the Cs1−xDMAxPbI3 and Cs1−xGuaxPbI3
perovskites exhibit tetragonal structuresa finding which we
ascribe to the presence of the larger cation in the crystal lattice.
In photovoltaic devices, we achieved a PCE of 15.2% using
Cs1−xDMAxPbI3, comparable to the PCE achieved in 40% Br
wide bandgap perovskites. The operational stability of the
Cs1−xDMAxPbI3 devices is 230 h, nearly 20 times longer than
that of 40% Br wide bandgap perovskites.
The phase instability of α-CsPbI3 arises due to the small

ionic radius of Cs+ cation, which results in a tolerance factor
lower than that required for a stable perovskite phase.9,10

CsPbI3 undergoes a phase transition to the non-perovskite δ-
phase due to this instability, also accelerated by lattice
distortions induced by polar solvents.7,11,12 Figure 1 and
Table 1 show the tolerance factors of CsPbI3, DMAPbI3,

Received: April 24, 2020
Accepted: June 16, 2020
Published: June 16, 2020

Letter

www.acsmaterialsletters.org

© 2020 American Chemical Society
869

https://dx.doi.org/10.1021/acsmaterialslett.0c00166
ACS Materials Lett. 2020, 2, 869−872

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
T

O
R

O
N

T
O

 o
n 

M
ar

ch
 2

6,
 2

02
1 

at
 0

2:
04

:1
6 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ziru+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bin+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laxmi+Kishore+Sagar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Hou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+Proppe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao-Ting+Kung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fanglong+Yuan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+Johnston"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+Johnston"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Makhsud+I.+Saidaminov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eui+Hyuk+Jung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zheng-Hong+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shana+O.+Kelley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edward+H.+Sargent"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edward+H.+Sargent"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmaterialslett.0c00166&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00166?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00166?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00166?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00166?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00166?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/amlcef/2/7?ref=pdf
https://pubs.acs.org/toc/amlcef/2/7?ref=pdf
https://pubs.acs.org/toc/amlcef/2/7?ref=pdf
https://pubs.acs.org/toc/amlcef/2/7?ref=pdf
www.acsmaterialsletters.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsmaterialslett.0c00166?ref=pdf
https://www.acsmaterialsletters.org?ref=pdf
https://www.acsmaterialsletters.org?ref=pdf


GuaPbI3, and mixed CsDMA and CsGua perovskites. For pure
CsPbI3, the cubic phase gives a tolerance factor of 0.851,
which is not in the range of structurally stable perovskites. Pure
DMA and Gua cations are too large and give tolerance factors
greater than 1; but mixed CsDMA and CsGua compositions

reach a tolerance factor slightly above 0.9 (Cs0.7DMA0.3PbI3
gives 0.903 and Cs0.7Gua0.3PbI3 gives 0.907), which falls within
the favorable range for a stable perovskite phase.
We first examined the crystallinity and morphology of thin

films of CsDMA and CsGua perovskites. Figure 2 a, b gives the
morphology of the films under scanning electron microscope
(SEM). The films exhibit smooth surfaces that are free of
pinholes. Figure 2 c, d show X-ray diffraction (XRD) patterns
of CsDMA and CsGua films. In a previous report, CsDMA
perovskites synthesized at 100°C were assumed to be cubic,9

but the double peaks at 28° in that report suggested that the
structure may actually be tetragonal. In this work, we anneal
the film between 40 to 80°C, and the resulting XRD shows a
tetragonal structure. Compared to normal tetragonal

Figure 1. Tuning tolerance factor using mixed CsDMA and CsGua. (a) Tolerance factors of pure CsPbI3, pure DMAPbI3, pure GuaPbI3,
Cs1−xDMAxPbI3 and Cs1−xGuaxPbI3. (b) Molecular structure of DMA and Gua.

Table 1. Comparison of Ionic Radii for Different A-Site
Cations

cation ionic radius (pm) tolerance factor for pure APbI3

DMA 272 1.026
Gua 278 1.038
MA 217 0.911
Cs 181 0.851

Figure 2. Morphology and crystallization of CsDMA and CsGua perovskite. (a) SEM images for CsDMA and (b) CsGua perovskite. The
scale bar is 1 μm. (c) XRD pattern of fresh and aged CsDMAperovskite film and (d) XRD pattern of CsGua perovskite.
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CsPbI3(β-CsPbI3), pure β-CsPbI3 is only observed above 210
°C, but for CsDMA and CsGua, the perovskite phase is formed
between room temperature and 80 °C. This mixture method
extends the range for stable, Cs-based perovskite. To confirm
the presence of DMA/Gua in the annealed films, we carried
out X-ray photoelectron spectroscopy (XPS) measurements
(Figure S1). The N signal indicates that the large organic
cations are present in the film following annealing at 80 °C.
Next, we monitored the stability of perovskite by obtaining

XRD before and after ageing. Figure 2c gives a comparison of
XRD patterns for the CsDMA perovskite. After samples age in
air for 30 min, the XRD pattern of the CsDMA perovskite
remains the same (Figure 2c), while in the case of pure CsPbI3,
it degrades considerably (Figure S2). We performed thermal
gravimetric analysis (TGA) to asses thermal stability, and
found no mass change below 200 °C (Figure S3), indicating
that the CsDMA films are more thermally stable than
perovskite compositions containing volatile MA molecules.13

After witnessing the ambient stability of the perovskite
system, we proceeded to examine its optoelectronic properties.
We collected steady state photoluminescence (PL) spectra and
PL lifetimes of the CsDMA and CsGua perovskite films
(Figure 3). The Cs0.7DMA0.3 perovskite exhibits a PL emission

peak at 730 nm, corresponding to a bandgap at 1.70 eV, and
the Cs0.7Gua0.3 perovskite gives a PL emission peak at 690 nm,
corresponding to a bandgap at 1.79 eV. This bandgap is similar
to that of pure CsPbI3 and is well-chosen for front cells in
perovskite-Si (1.70 eV) and perovskite-perovskite tandems
(1.79 eV). The PL lifetime of Cs0.7DMA0.3 and Cs0.7Gua0.3
perovskite are 336 ns and 14 ns. Compared to pure CsPbI3,
which gives a PL lifetime between 1 to 5 ns depending on the
fabrication process,14,15 the mixed tetragonal perovskite gives a
substantially longer PL lifetime comparable to the normal
CsFA perovskite,16 suggesting reduced nonradiative recombi-
nation. We conclude that the mixed perovskite has a lower trap
state densitya finding that should allow for a higher Voc in
perovskite solar cells (PSC). Pure CsPbI3 PSCs usually suffer
from a large Voc loss: the highest reported Voc is only 1.11 V,
despite CsPbI3 exhibiting a wide bandgap at 1.70 eV.
We, therefore, proceeded to investigate the effects of mixed

tetragonal CsDMA and CsGua perovskites on the performance
of solar cells. We fabricated planar PSCs with an architecture
consisting of ITO/c-TiO2/perovskite/Spiro-OMeTAD/Ag.
The cross-sectional SEM image of the PSC is given in Figure
S4. For Cs/DMA, we varied the Cs to DMA ratio (Table S1)
and found the optimum power conversion efficiency (PCE)
was achieved using 70% Cs and 30% DMA (Figure S5),
corresponding to a bandgap of 1.70 eV. The J−V curve of the
champion device is given in Figure 4a. The champion device

has a VOC of 1.19 V, a JSC of 18.4 mA cm−2, and PCE of 15.2%.
We achieved a VOC higher than that reported in pure CsPbI3
PSCs; it is 80 meV higher than in champion reports of
CsPbI3.

14 Figure 4b gives the external quantum efficiency of
the champion device, and it corresponds to an integrated
photocurrent of 18.2 mA cm−2. The stabilized output at the
maximum power point (MPP) is 13.5% (Figure 4c). For
CsGua, a similar optimization was carried out, but a maximum
PCE of only 3.65% was achieved, possibly due to the impure
phase of GuaPbI3 and Gua2PbI4 (Figure S6).
We, then, checked the operational stability of the CsDMA

perovskite PSCs. Since conventional wide-bandgap perovskites
with Br content 30−40% are unstable due to the Hoke effect,17

we also fabricated PSCs using 40% Br perovskite active layers
(Figure S7) using the same n-i-p structure to compare with the
CsDMA devices herein.18 The 40% Br perovskite devices
degrade rapidly to below 80% of initial PCE when operated at
MPP operation for 12 h, while CsDMA devices are stable for
230 h under same conditions (Fig. 4d).
In summary, the present work reports stable, wide-bandgap,

bromine-free perovskites. In contrast with CsMAFAPbIBr
perovskite, we were able to tune the crystal lattice by
incorporating even larger cations at a lower concentration.
We demonstrate that by mixing CsPbI3 with another A-site
cation with an ionic radius between 272 and 278 pmDMA
or Guait is possible to form tetragonal perovskites that are
stable at room temperature. Here, the large DMA or Gua
cations are incorporated in the final lattice instead of being
used as an additive. The mixed perovskite yields 14-60 times
longer PL lifetimes than pure CsPbI3, suggesting a lower trap
state density. We achieved a PCE of 15.2% and a Voc of 1.19 V.
The Voc of the CsDMA devices is higher than in prior reports
of pure CsPbI3 PSCs. The devices operated stably over 230 h
at MPP, which is nearly 20 times longer than for the case of
40% Br wide-bandgap perovskites. This study extends the
materials selection range for stable wide-bandgap perovskites.

Figure 3. Photoluminescence spectroscopy of CsDMA and CsGua
thin films: (a) Steady-state PL spectra and (b) PL lifetime of
CsGua and CsDMA perovskite.

Figure 4. CsDMA device characterization. (a) J−V characteristics
of the champion device under simulated AM 1.5G solar
illumination of 100 mW cm−2. (b) EQE spectrum of the champion
device. (c) Stable output at MPP, the champion device stabilizes at
13.5%. (d) Stability of an unencapsulated device under continuous
white light LED illumination (100 mW cm−2) at MPP in N2.
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