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The materials that comprise optoelectronic devices,
including solar cells, light-emitting diodes (LEDs), and

photodetectors, have seen impressive progress in the last 50
years. Research has been fueled in significant part by the ever-
increasing technological innovations demanded by mobile/
consumer electronic devices such as smartphones, united with
the growing need for more efficient energy devices to help
combat climate change. More than $25 billion USD was
devoted to clean energy materials by venture investors between
2004 and 2008,1 and yet the return on investment (ROI) in
this sector was less than half of those returned by similar VC
efforts over the same time frame. This correlates with a halving
in global expenditures on renewable energy in the decade that
ensued.2 We link the poor return to the difficult, expensive,
long, and uncertain process of materials discovery.

■ PITFALLS OF TRADITIONAL MATERIALS
DISCOVERY

The traditional process by which new materials are discovered
is limited by the need for a substantial initial investment to
build the infrastructure needed to synthesize and characterize
materials; the immense chemical space from which materials
can be synthesized; and the cost per experiment, which limits
the portion of the chemical space that we realistically can
explore. What is more, incorporating materials into devices
requires even further development and optimization of
materials interfaces, stability, reproducibility, and processing.
The organic−inorganic halide perovskite solar cells illustrate

many of these points. Concerted and intensive research efforts
from thousands of researchers globally have improved the
power conversion efficiency of perovskite solar cells from less
than 10% to 25.3% in under a decade.3 Yet, despite the
tremendous progress, and tremendous resources, devoted to
this topic, perovskite solar cells still need further progress on
stability under accelerated testing conditions.4

These factors limit the number of market participants willing
to invest in commercializing such technologies. Perovskite
solar cells and, more generally, energy materials will benefit
from strategies that accelerate materials discovery.

■ MACHINE LEARNING−ACCELERATED MATERIALS
DISCOVERY FRAMEWORK

Materials discovery involves a large number of variables in each
new experiment; machine learning is particularly well-tailored
to translating unintuitive high-dimensional spaces to a single,
useful output. When trying to correlate a set of parameters that
define an experiment with an outcome, for example, correlating
the crystal structure of a new material with a computationally

evaluated bandgap or correlating the combination of precursor
stoichiometries, concentrations, and temperatures used in
fabricating a thin-film solar cell with its power conversion
efficiency, it is critical to use techniques that can capture many
different interactions. ML captures multivariate interactions
and can do so in ways that are not explicitly or implicitly
considered by researchers, who may limit their scope to
looking for correlations that have traditionally been exploited.
ML can learn underlying patterns, both in a material’s crystal
structure and in the experimental parameters used to generate
a material or device, that are unavailable with human intuition
alone. As a result, ML opens an exciting avenue to accelerate
the discovery of new materials.
Early in its use in materials science, ML was used to aid

researchers in the computational evaluation of new materials.
Computational screening is often a first step in the materials
discovery process: it provides researchers with a set of
materials compositions that may have a desired set of
properties. This is done by using first-principles calculations,
such as density functional theory (DFT) or molecular
dynamics (MD), to find the energetically favored crystal
structure of a new material through a series of iterative
relaxation steps. The starting point, before the relaxation
begins, of the crystal structure is often derived from an
experimentally known material in which individual elements of
the known material are substituted for the elements of the new
material. From the relaxed crystal structure, it becomes
possible to approximate energetic properties, such as the
formation energy and the bandgap, of the new material. The
relaxation of the crystal structure and approximation of the
energetic properties are computationally expensive, with single
compounds taking up to 12 CPU years on modern
supercomputers, limiting the number of compounds that can
be realistically explored to ∼104.5
Fortunately, there exist large, readily available data sets of

computed materials properties, such as Materials Project,6 the
Chemical Space Project,7 and ANI-1.8 These contain
formatted, standardized data, ideal for ML, and have catalyzed
the development of ML models to replace the first-principles
calculations used to screen materials.
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ML models can be trained with data from these data sets
without requiring a researcher to generate new data. These
models take as an input a representation of an (un)relaxed
crystal structure and predict a set of properties, such as
bandgaps and formation energies, directly. The trained ML
models, owing to their extremely fast forward compute times,
enable exploration of a much wider chemical space (>105 ×)9

than DFT alone can explore. This vast chemical space is
essential for the evaluation of optoelectronic materials: when
considering partial substitution of an element in a material
(doping), the number of possible materials belonging to a
single material class rapidly approaches infinity. The rapid
exploration of new material compositions can help reduce the
incremental nature of materials optimization by providing
researchers with insights to widely varying material composi-
tions, without significantly increasing the associated oppor-
tunity cost of exploration.
ML is also being used to accelerate the synthesis and

characterization of new materials. While ML, particularly deep
learning, typically requires large data sets, simultaneous
advances in robotic synthesis and characterization techniques
allow researchers to increase experimental throughput.10

Access to high-throughput experimentation (HTE), either
through the use of robotic equipment or with other highly
parallelized techniques, generates large quantities of data. ML
models can then be trained to both predict the outcomes of
future experiments and autonomously interpret the results of
the characterization of the material. This allows the materials
discovery cycle to become highly parallelized and can greatly
increase the rate at which interesting materials are discovered:
robot-based techniques have been shown to increase the rate
of experiments from ∼20 samples/day to more than 6000.11

Even without access to robotic equipment or other means to
perform HTE, ML can be used to optimize the performance of
a new material. Bayesian optimization, a technique particularly
useful when optimizing a hard-to-evaluate function, can be
used to improve the performance of a material with minimal
experimental cycles: for example, this process was used to
develop stable organic photovoltaic (OPV) materials, in which
the number of experiments needed to optimize the material
was reduced from 500 to just 60.11 Bayesian optimization
exploits similarities, evaluated by the ML model in a high-
dimensional space, between each new experiment to maximize
the rate-of-learning in each experimental cycle. It levers Bayes
formula to evaluate both the expected outcome of a new
experiment and the uncertainty of the experiment. If a new
experiment is proposed with a set of parameters (temperature,
pressure, humidity) similar to one the model has seen before,
the model will predict the outcome of the new experiment with
high certainty; if the proposed experiment contains a set of
parameters that are significantly different than the ones used to
train the model, it will predict the expected outcome with low
certainty. As a result, the model can decide which experiment
to perform next: either one with the highest likelihood of
having an improved outcome or one that provides the most
new information by probing an experimental space with high
uncertainty. Bayesian optimization techniques work on a
relatively small number (∼10) of data points and, as a result,
can be employed from the start of a new research project. This
is a key enabler of self-driving science, in which ML models
determine the next set of experiments to be performed, robots
perform and analyze the experiments, and the ML model is

then updated before repeating the cycle, and is an active area of
research.12,13

It is important to focus on new, efficient materials that can
reach commercialization: here, stability, reproducibility, and
repeatability are chief considerations. Measuring these proper-
ties can take significant time and resources: for example,
reliability is something typically measured over hundreds and
even thousands of hours, even if an accelerated lifetime model
is pursued. ML models can be used to learn proxies for
different target parameters such as stability, repeatability, and
reproducibility. By incorporating physics-based fingerprints
into ML surrogate models, it is possible for the models to learn
the mechanisms underpinning material degradation. This
technique has recently been used to improve the under-
standing of the stability enhancement of perovskite films seen
when these are capped with a low-dimensional perovskite
material.14 The ML model first optimized the stability of
different perovskite films and then learned the correlation of
improved stability. As a result, the model was able to suggest
modifications to the capping layer that offered improved
stability compared with the traditional counterparts. Applica-
tion of ML to this area of materials discovery is still in its
infancy in part due to the required time to generate the data
sets necessary to learn the proxies. However, this may be the
aspect of the materials discovery process where ML provides
the greatest benefit: researchers will be able to measure the
proxies for stability, repeatability, and reproducibility while
improving the efficiency of a new material and can consider
ways to improve these simultaneously. This can help limit the
number of new materials that fail at the stability testing stage of
the discovery process and increase the chances that those we
invest in will operate successfully in real-world applications.

■ FUTURE CONSIDERATIONS OF MACHINE
LEARNING−ACCELERATED MATERIALS
DISCOVERY

The progress on ML methods in materials science has been
impressive and rapid, but there remain a few key consid-
erations for the field. We propose here three mandates for the
accelerated materials discovery field: align on a metric of
acceleration-of-discovery to report; develop protocols to
decide whether to invest in the infrastructure required for an
accelerated materials discovery framework must be developed;
and shift emphasis to accelerating the lab-to-market timeline.
Choosing the right acceleration metric will help the

community keep its focus on the true purpose of materials
discovery. In early studies, the number of samples that can be
tested with the accelerated framework in a unit of time has
been compared with the number of samples that a researcher
can test over the same time period. While this metric is
compelling and provides an easy benchmark with which to
compare different methods, it fails to capture the acceleration
in discovering good materials.
A metric that comes closer is the number of new materials

per unit time that simultaneously meets target properties. Just
as the perovskite community has recently converged around
stability metrics,15 the ML materials community will benefit by
defining accelerated-discovery metrics that allow true quanti-
tative progress to be measured based on benchmarks.
The field will benefit from developing approaches to

estimate, at the outset of a potential project, whether that
process stands to net benefit from an accelerated approach.
This must include an analysis of the one-time cost of
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developing the infrastructure required to carry out an
accelerated discovery. This applies to acquiring the necessary
experimental equipment, training personnel on its operation,
training personnel on the ML methodologies to be used,
acquiring the data necessary to train the models, and then
actually training the models. Of these, the time it takes to train
models and to acquire data are reported most often; yet, each
of these tasks must be completed before any acceleration can
happen. These need to be considered both before deciding
whether a project merits an accelerated framework and after a
project is completed. If the community starts publishing these
metrics, it will give other researchers a more realistic idea of
what is required when trying to accelerate materials discovery
and whether a project can truly benefit from the development
of an accelerated framework.
Finally, we propose that the emphasis of these accelerated

frameworks should be on the acceleration of the lab-to-market
timeline of a new material. The success of a new methodology
for materials discovery should hinge on whether it accelerates
the development of a new material that is eventually
commercialized. This is not an easy ask: the commercialization
of new materials is a many faceted, difficult process. Key
metrics to track can include the cost of materials required to do
research; the robustness of the experimentation methods; the
modularity of the experimental equipment; and the time it
takes to train new personnel on its operation. By considering
these at the onset of the development of accelerated materials
frameworks, there exists the opportunity to increase the
development of new, commercially relevant materials.
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