
Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption

Yuhang Wang,[#] Aoni Xu,[#] Ziyun Wang,[#] Linsong Huang, Jun Li, Fengwang Li, Joshua Wicks, Mingchuan Luo, Dae-Hyun Nam, Chih-Shan Tan, Yu Ding, Jiawen Wu, Yanwei Lum, Cao-Thang Dinh, David Sinton, Gengfeng Zheng, and Edward H. Sargent^{*}

 NO_3 RR-to- NH_3 pathway and offer an adsorption energy-activity relationship for the CuNi alloy system. This correlation between catalyst electronic structure and NO_3 RR activity offers a design platform for further development of NO_3 RR catalysts.

INTRODUCTION

Human activities have led to an anthropogenically induced increase over time in the concentration of environmental NO_3^{-} :^{1,2} the combustion of fossil fuels emits nitrous oxides (NO_x) ; fertilizer-intensive agriculture releases NO_3^{-} into soil and groundwater; and NO_3^{-} -containing waste is discharged from industrial sources. The accumulation of NO_3^{-} induces acid rain and photochemical smog,^{3,4} and the uptake of NO_3^{-} in mammals results in its *in vivo* conversion to nitrite (NO_2^{-}) ,^{5,6} a cause of methemoglobinemia and a known carcinogen.

Closing the NO₃⁻-nitrogen cycle^{1,2,7,8} is therefore of interest: it is desirable to transform NO₃⁻ to harmless⁹⁻¹¹ or, better yet, value-added products.^{12,13} The electrochemical reduction of NO₃⁻ provides a route to the production NH₃,^{9,13} which has widespread use as a fertilizer precursor, chemical feedstock, and fuel:¹⁴

$$NO_{3}^{-} + 6H_{2}O + 8e^{-} \rightarrow NH_{3} + 9OH^{-},$$

$$E^{0} = 0.69 \text{ V vs RHE (pH = 14)}$$
(1)

Achieving higher-performance electrocatalysts for NO₃⁻RR remains challenging, in significant part because the relationship between catalyst structure and activity is poorly understood.

To date, Faradaic efficiencies (FEs) greater than 90% for NO_3^- reduction to NH_3 have been achieved on Cu-based catalysts, but typically these require potentials more negative

than -0.27 V vs RHE in NO₃⁻-containing 1 M KOH electrolytes, corresponding to an overpotential exceeding 0.96 V.^{15–19} Previous studies found that alloying Cu with Ni results in a positive shift in the NO₃⁻RR half-wave potential ($E_{1/2}$), the potential at which the current is equal to one-half of the mass-transfer-limiting current, by ~0.1 V,^{18,19} a finding that corresponds to enhanced catalytic activity at a given potential. A mechanism wherein Cu performs the adsorption of NO₃^{*} and Ni is the binding site of H* was proposed by Simpson and Johnson;²⁰ however, this mechanism does not explain enhanced NO₃⁻RR activity on CuNi alloys: Ni converts NO₃⁻ to NH₃ inefficiently,¹⁹ so replacing surface Cu atoms with Ni would be expected to reduce the density of active sites for NH₃ production.

We noted that upshifts in the half-wave potential $(E_{1/2})$ in reduction reactions typically suggest an increase in electrocatalytic activity. This, we posited, could arise due to a modulated intermediate adsorption energy in CuNi alloys compared to pure Cu. Drawing parallels with oxygen reduction reaction (ORR) literature, we noted that platinum–nickel

Received: December 11, 2019 Published: March 2, 2020

pubs.acs.org/JACS

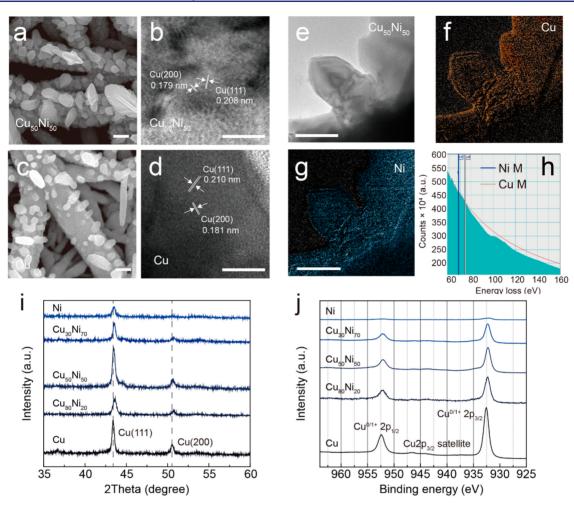


Figure 1. Materials characterization of copper-nickel alloy catalysts. (a, b) Representative SEM and HRTEM images of the $Cu_{50}Ni_{50}$ catalyst. (c, d) Representative SEM and HRTEM images of the pure Cu catalyst. The scale bars are 200 nm in (a) and (c), and 10 nm in (b) and (d). (e-h) STEM image and EELS mapping analysis of the $Cu_{50}Ni_{50}$ catalyst. The scale bars are 100 nm. (i, j) XRD patterns and XPS Cu 2p spectra of catalysts with different Cu:Ni ratios.

(PtNi) alloy catalysts typically exhibit an upshifted half-wave potential of ~0.1 V compared to pure Pt catalysts.^{21,22} Decreasing adsorption energies for oxygenated species on PtNi alloys leads to increased activity, an instance of scaling relations for ORR catalysts.²³ This has been associated with the shifted *d*-band center position and surface atomic arrangement reported by Marković and co-workers.²²

In sum, the introduction of heteroatoms modulates the electronic structure of catalysts, enabling the enhancement of electrocatalytic activity.^{22–25} We explore herein how such a strategy can be employed to design catalysts exhibiting enhanced NO_3 ⁻RR activity and selectivity.

We began by preparing a series of CuNi alloys with various Cu:Ni compositions, and we observed a 0.12 V upshift in $E_{1/2}$ and a 0.2 V lower overpotential required for peak NH₃ FE. This occurred at a composition—Cu₅₀Ni₅₀ alloy catalysts—that simultaneously produced a 6-fold increase in NO₃⁻RR activity compared to the case of pure Cu at 0 V vs RHE (pH = 14). We utilized X-ray photoelectron spectroscopy (XPS), *operando* X-ray adsorption spectroscopy (XAS), and ultraviolet photoelectron spectroscopy (UPS) to investigate the electronic structure of the catalysts and found that the Cu *d*-band center upshifted toward the Fermi level in CuNi alloys.

In addition, we investigate the reaction pathway with density functional theory (DFT) calculations and build an intermediate adsorption energy $-NO_3$ -RR performance relationship for the CuNi alloy system.

RESULTS AND DISCUSSION

Catalyst Synthesis and Characterization. We began by electrodepositing catalysts on both rotating disk electrodes (RDEs) and polytetrafluoroethylene (PTFE) membranes covered with a 300 nm thick Cu seed layers (300 nm Cu/ PTFE). We used electron microscopy to investigate the morphological and crystalline structure of the catalysts. The CuNi catalysts with Cu-to-Ni ratios of 80:20, 50:50, and 30:70 in the deposition solutions, labeled Cu₈₀Ni₂₀, Cu₅₀Ni₅₀, and Cu₃₀Ni₇₀, exhibited dendritic morphologies (Figure 1a and Figures S1 and S2) with dendrite diameters in the range of 200-400 nm. Using high-resolution transmission electron microscopy (HRTEM), we observed lattice spacings of 0.208 and 0.179 nm for the Cu(111) and Cu(200) facets (Figure 1b) of the Cu₅₀Ni₅₀ catalysts due to the formation of the CuNi alloy phase—compared to pure Cu dendrites exhibiting lattice spacings of 0.210 and 0.181 nm for Cu(111) and Cu(200)facets that agree with cubic Cu (Figure 1d).²⁶ The Cu-to-Ni ratio in the Cu₅₀Ni₅₀ catalyst, quantified by electron energy loss

pubs.acs.org/JACS

Article

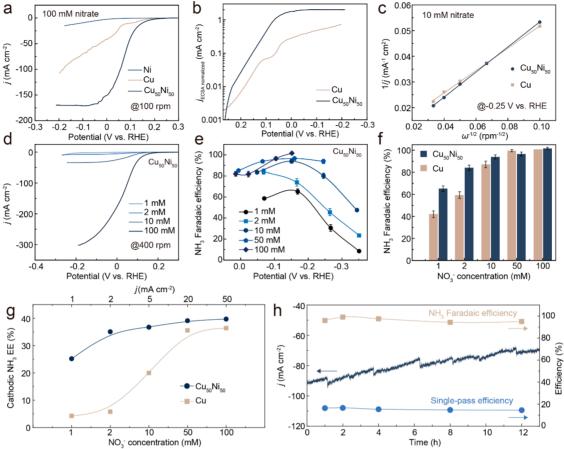
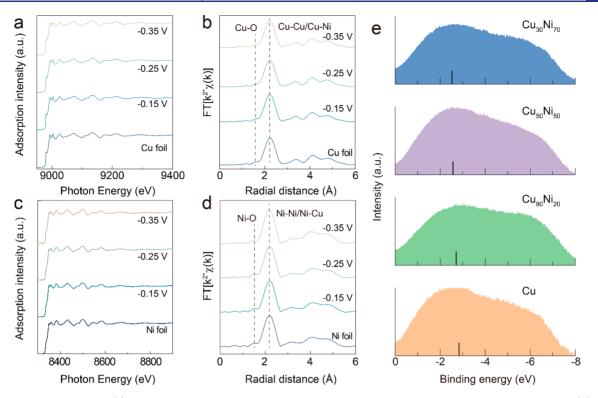


Figure 2. NO_3^- -to- NH_3 electroreduction performance. (a) j-V plots of NO_3^- reduction (80% *iR* corrected) on the $Cu_{50}Ni_{50}$, pure Cu, and pure Ni RDE at 100 rpm in 1 M KOH + 0.1 M KNO₃ electrolyte. (b) ECSA-normalized current densities. (c) Koutecký-Levich plots of NO₃⁻ reduction on Cu₅₀Ni₅₀ and Cu at -0.25 V vs RHE in 1 M KOH + 10 mM KNO₃ electrolyte. (d) j-V plots of NO₃⁻ reduction (80% *iR* corrected) on the $Cu_{s0}Ni_{50}$ RDE at 400 rpm. (e) NO_3^- -to-NH₃ Faradaic efficiency (FE) on the $Cu_{s0}Ni_{50}/PTFE$ catalyst in different NO_3^- concentrations. (f) Comparison of the highest NH₃ FE on the Cu₅₀Ni₅₀/PTFE and pure Cu/PTFE catalysts at different NO₃⁻ concentrations. (g) Comparison of the cathodic (half-cell) NH₃ energy efficiency (EE) obtained using the Cu₅₀Ni₅₀/PTFE and pure Cu/PTFE catalysts. (h) Stability and single-pass conversion test of nitrate reduction at -0.1 V vs RHE using a Cu₅₀Ni₅₀/Cu foam catalyst.

spectroscopy (EELS, Figure 1e-h), was ~52:48. We observed similar ratios at other randomly selected positions (Figure S3 and Table S1), arguing against a main role for catalyst heterogeneity in catalytic performance. X-ray diffraction (XRD) reveals a decrease in Cu lattice spacings when Ni is incorporated (Figure 1i and Figure S4). The Cu(111) and Cu(100) *d*-spacings of the Cu₅₀Ni₅₀ catalyst revealed by XRD agree with the results observed with HRTEM.

We also looked for evidence of changes in the electronic properties of the Cu and Cu:Ni catalysts. XPS indicated a notable decrease in the Cu 2p binding energy and an increase in the metallic Ni 2p binding energy for the alloyed catalysts (Figure 1j and Figure S5). Among the three alloyed catalysts, we found the largest Cu 2p binding energy shift of ~0.35 eV in Cu₅₀Ni₅₀. This can be explained through electron redistribution,²⁷ which leads to an opposite shift of the Cu 3d band toward the Fermi level,²⁸ tuning the adsorption energies of both H* and NO₃*.

In the case of the pure Ni catalysts, only the XRD peaks of the Cu/PTFE support were observed (Figure 1i). XPS measurements exhibited a Cu 2p binding energy very similar to that for pristine Cu/PTFE (Figure S6). SEM, elemental mapping, and Ni 2p XPS (Figures S5 and S7) revealed only Ni,


accompanied by NiO_x formed by oxidation in air, fully covering the Cu/PTFE fibers.

NO₃-RR Activity and Kinetics. To investigate the electrocatalytic activity and kinetics of NO3⁻ reduction, we tested each catalyst on RDEs. With the Cu₅₀Ni₅₀ catalyst, we found an onset potential of ~0.25 V vs RHE (pH = 14) for NO_3^- reduction (Figure 2a). The current density then increased sharply to its transport-limited ceiling of ~170 mA cm^{-2} (according to eq 1 in Supporting Information) at 100 rpm in 1 M KOH + 100 mM KNO₃ (pH = 14) electrolyte. On the pure Cu catalysts, we found that a much more negative cathodic potential was required to reach this same NO3-transport-limited current: the current density was only 100 mA cm^{-2} at -0.2 V vs RHE, which was only 60% of that obtained by operating the Cu₅₀Ni₅₀ catalyst at the same potential. The pure Ni catalyst is almost inactive for NO₃⁻ reduction (Figure S8a.b).

The current density, normalized to the electrochemically active surface area (ECSA), increases exponentially to ~1 mA cm⁻² along with the cathodic potential for the case of Cu₅₀Ni₅₀. In contrast, an evident multi-electron-transfer process (Figure 2a,b) was seen on the pure Cu catalyst. Cu₅₀Ni₅₀ catalysts exhibited a 40% lower ECSA, determined by its double-layer capacitance, compared to pure Cu (Figure S9).

с

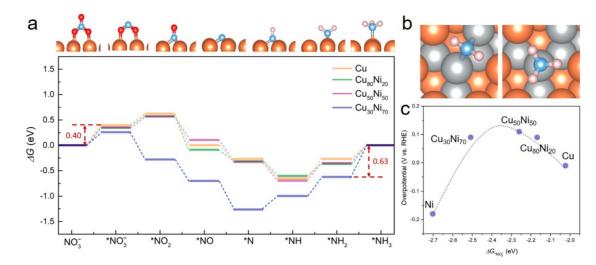
pubs.acs.org/JACS

Figure 3. Electronic structure. (a) *Operando* Cu K-edge hXAS spectra of the $Cu_{50}Ni_{50}$ catalyst at different applied potentials. (b) Fourier-transformed *operando* Cu K-edge hXAS spectra of the $Cu_{50}Ni_{50}$ catalyst at different applied potentials. (c) *Operando* Ni K-edge hXAS spectra of the $Cu_{50}Ni_{50}$ catalyst at different applied potentials. (c) *Operando* Ni K-edge hXAS spectra of the $Cu_{50}Ni_{50}$ catalyst at different applied potentials. (c) *Operando* Ni K-edge hXAS spectra of the cu_{50}Ni_{50} catalyst at different applied potentials. (c) UPS spectra and *d*-band center positions of pure Cu catalysts and the CuNi alloys.

This translated to a 6-fold increase in ECSA-normalized current density for $Cu_{50}Ni_{50}$, compared to pure Cu at 0 V vs RHE (Figure 2b). The intrinsic NO_3 -RR activity was significantly improved using the CuNi alloy systems.

To gain insight into the kinetics, we plotted Koutecký– Levich (K-L) curves for NO₃⁻ reduction on the Cu₅₀Ni₅₀ and pure Cu catalysts (Figure 2c) using their current density vs potential (*j*–*V*) profiles in 1 M KOH + 10 mM KNO₃ (pH = 14) electrolyte (Figures S8c and S10). K-L analysis revealed a four-electron-transfer process for NH₃ production on both the Cu₅₀Ni₅₀ and Cu catalysts. The kinetic current density obtained using the Cu₅₀Ni₅₀ catalyst was calculated from the intercept of the K-L plot and was 220 mA cm⁻² at -0.25 V vs RHE, 2 times higher than in the case of pure Cu controls (Table S2).

We investigated the $E_{1/2}$ of NO₃⁻RR on catalysts with different Cu:Ni ratios in 1 M KOH + 10 mM KNO₃ electrolyte. On Cu₃₀Ni₇₀, Cu₅₀Ni₅₀, Cu₈₀Ni₂₀ alloys, we found increasing NO₃⁻RR $E_{1/2}$ compared to the pure Cu catalyst. For instance, at 100 rpm, Cu₅₀Ni₅₀ catalyst exhibited the highest $E_{1/2}$ of 0.08 V vs RHE among all catalysts, while an $E_{1/2}$ of -0.045 V vs RHE was seen in the case of pure Cu (Figure S11). The improvement in $E_{1/2}$ further increased to ~120 mV when catalysts were tested in 100 mM KNO₃ at the same rotating rate (Figure 2a). For all NO₃⁻ concentrations, Cu₅₀Ni₅₀ catalysts perform better than the pure Cu, as evidenced by the upshifting of $E_{1/2}$ and the reduced overpotential required for the same current density (Figure 2d and Figure S7d).


 NO_3 -RR Selectivity. We investigated NH₃ selectivity using catalysts deposited on Cu/PTFE supports, e.g., the Cu₅₀Ni₅₀ catalyst on PTFE (labeled Cu₅₀Ni₅₀/PTFE), in a flow

electrolyzer.²⁹ We quantified the NH_3 product concentration as a function of a range of NO_3^- concentrations using an indophenol blue method (Figure S12). To confirm that the NH_3 produced indeed comes from NO_3^- reduction, ¹⁵ $NO_3^$ electroreduction was performed using the same catalyst (Figure S13).

We achieved a 99 ± 1% Faradaic efficiency (FE) for NH₃ at ~ -0.15 V vs RHE on the Cu₅₀Ni₅₀/PTFE catalyst in 1 M KOH + 100 mM KNO₃ electrolyte (Figure 2e and Table S3). The peak FE for NH₃, on Cu₅₀Ni₅₀/PTFE, shifted to a 50 mV lower overpotential compared to that of the pure Cu/PTFE (Figure S14). The corresponding current density using Cu₅₀Ni₅₀/PTFE was more than 1.3 times higher than that obtained using pure Cu controls (Table S5). We checked for catalyst reconstruction following NO₃⁻ reduction after a 2-h NO₃⁻RR operation in 100 mM NO₃⁻ and found that morphologies were retained in the case of both Cu₅₀Ni₅₀/PTFE and pure Cu/PTFE (Figure S15).

Alloying with Ni increased the NH₃ FE at low overpotentials (potentials > -0.1 V vs RHE) in different NO₃⁻ concentrations. Cu₅₀Ni₅₀ catalysts enhanced the NH₃ FE by over 20% at ~0 V vs RHE compared to pure Cu (Figure 2f and Tables S4 and S5). Specifically, the highest NH₃ FEs are $65 \pm 3\%$, 84 $\pm 2\%$, and 93 $\pm 2\%$ in 1, 2, and 10 mM NO₃⁻ conditions at pH = 14, respectively. In contrast, pure Cu is only able to attain FEs of $42 \pm 3\%$, $59 \pm 3\%$, and $87 \pm 3\%$ at the same NO₃⁻ concentrations.

We achieved a peak NH₃ half-cell energy efficiency (EE) of 40% using $Cu_{50}Ni_{50}/PTFE$ at 50 mA cm⁻² in 100 mM NO₃⁻ (Figure 2g). This corresponds to a full-cell EE of 31% for this catalyst at 50 mA cm⁻² in the same electrolyte (Figure S16), which is 1.3-fold improved compared to the case of the pure

Figure 4. DFT calculations. (a) Reaction free energies for different intermediates on a CuNi surface. (b). Hydrogenation reaction of $*NH_2$ ($*NH_2 + H_2O + e^- \rightarrow *NH_3 + OH^-$) on a Cu₃₀Ni₇₀ surface. (c) The volcano-type relationship between experimental overpotentials of NO₃⁻RR at 5 mA cm⁻² in 10 mM KNO₃ and adsorption energies of $*NO_3^-$ on all CuNi alloys. Red, pink, blue, gray, and orange spheres correspond to oxygen, hydrogen, nitrogen, nickel, and copper atoms, respectively.

Cu catalyst. A 31% NH₃ full-cell EE was also obtained using Cu₅₀Ni₅₀/PTFE at 2 mA cm⁻² in 2 mM NO₃⁻ (Figure S16). This is ~6 times greater than that of the pure Cu catalyst under the same condition.

By studying both the NH₃ FE on Cu₈₀Ni₂₀ and Cu₃₀Ni₇₀ catalysts in 1 mM NO₃⁻, we found that the Cu₅₀Ni₅₀ catalyst was the most active and selective catalyst (Figures S17 and 18). The NH₃ FE at -0.06 V vs RHE was 58 \pm 2%. Cu₈₀Ni₂₀ catalysts produced NH₃ with a similar FE of 51 \pm 2%. Introducing 70% Ni into Cu caused a sharp decrease in NH₃ FE from ~58% to ~31%. Depositing pure Ni largely blocked the Cu sites underneath and further reduced the NH₃ FE to 11 \pm 1%.

We implemented the Cu₅₀Ni₅₀ catalyst on a 3D porous electrode by depositing the Cu₅₀Ni₅₀ catalyst onto a Cu foam with a pore size of ~200 μ m (Figure S19). We achieved, as a result, a 90 mA cm⁻² current density at -0.1 V vs RHE, which is 2-fold higher than that obtained with the Cu₅₀Ni₅₀/PTFE electrode in 1 M KOH + 100 M KNO₃ (Figure 2h). The NH₃ FE was steady at ~95% over 12 h of NO₃⁻RR and at a 39% NH₃ half-cell EE. A total of 15% of the input NO₃⁻ was converted into NH₃ in a single pass (Figure 2h and Table S7).

Electronic Structure Studies. To shed light on the electronic structure of the CuNi alloy catalysts under NO_3^-RR conditions, we turned to *operando* hard XAS (hXAS).³⁰ The $Cu_{50}Ni_{50}$ catalyst in 1 M KOH + 10 mM KNO₃ electrolyte at a series of applied potentials exhibited pure metallic features in both Ni and Cu K-edge spectra under steady-state operation conditions (Figure 3a-d and Figure S20). We then calculated the *operando* coordination numbers (CNs) of Ni at different potentials. The CNs of metal-metal bonds stayed above 11.5 at all potentials (Tables S6 and S7). This result suggests that, in our work, there is unlikely to be a prominent role for subsurface oxygen species, as previously reported in related catalysts under distinct electrochemical (acidic) conditions.³¹

Since the adsorption energy of intermediates is strongly correlated with the *d*-band center position of catalysts,³² we performed UPS studies for the pure Cu and the CuNi alloys (Figure 3e). The pure Cu catalyst exhibited a *d*-band center location of $-2.84 \text{ eV} (E - E_F$, Fermi level) on the background-

corrected spectrum. Increasing the Ni composition in the alloys causes an upshift of the *d*-band center toward the Fermi level by 0.14, 0.28, and 0.32 eV for $Cu_{80}Ni_{20}$, $Cu_{50}Ni_{50}$, and $Cu_{30}Ni_{70}$, respectively. These results were in agreement with the XPS results, wherein we observed the 2p electron redistribution which leads to a positive shift of the Cu 3d band toward the Fermi level. This indicates decreasing *anti*bonding occupation and stronger adsorbate bonding,³² which means that alloying Ni with Cu greatly enhances the adsorption energies of intermediate species.

Taken together, the activity, selectivity, and *d*-band center positions allow us to reason that enhanced NO_3 ⁻RR intermediate adsorption, arising due to the shifted *d*-band center position, improved the NO_3 ⁻RR activity and selectivity on CuNi alloys. However, introducing an excess of Ni, i.e., the $Cu_{30}Ni_{70}$ catalyst, affected the reaction intermediates too strongly, which lowers the activity and selectivity.

DFT Studies. We sought to investigate, using DFT, the relationship between intermediate adsorption and the NO_3 -RR activity of different CuNi catalysts (Figure 4a). The stability of CuNi alloy systems was screened via doping Ni into Cu at various layers and distributions (Figures S21 and S22 and Table S8). Thermodynamics first force Ni atoms to replace the subsurface Cu when the Ni:Cu ratio is less than 1:1. The substitution takes place on Cu surfaces with a further increase in the ratio (Figure S22).

The electrochemical reaction NO₃⁻ + $6H_2O + 8e^- \rightarrow NH_3$ + 9OH⁻ was represented by a series of deoxidation reactions, *NO₃⁻ \rightarrow *NO₂ \rightarrow *NO \rightarrow *N, followed by hydrogenation reactions, *N \rightarrow *NH \rightarrow *NH₂ \rightarrow *NH₃, according to a previous report.³³ With the stable CuNi structures we built, we took into account different adsorbed orientations of intermediates on all possible active sites (Figures S23 and S24). For all intermediates, the most stable adsorption configurations (Figure 4a) with the lowest total energies were employed to illustrate the NO₃⁻RR pathway, and hence assess the activities of different catalysts.

A full NO₃⁻RR pathway in 1 M KOH (pH = 14), including the deoxidation/hydrogenation reactions and intermediates,³³ was then calculated (Figure 4a). On pure Cu, the first NO₃⁻

adsorption step is the potential-dependent step (PDS), of which the maximum reaction free energy is 0.40 eV at -0.14 V vs standard hydrogen electrode (SHE). Introducing Ni atoms moves the PDS from NO₃⁻ adsorption to the hydrogenation of the *NH₂ intermediate (*NH₂ + H₂O + $e^- \rightarrow *NH_3 + OH^-$, Figure 4b), as the result of enhanced adsorption caused by the upshifted *d*-band center (Figure 3e). A volcano-type relationship between the $*NO_3^-$ adsorption energy and the NO_3^-RR experimental overpotentials was seen (Figure 4c). With increasing Ni concentration in CuNi alloys, a stronger adsorption of *NO₃⁻ on the surface further modifies the energetics of NO₃⁻RR. However, on Cu₃₀Ni₇₀ alloy and pure Ni, the reaction free energy for *NH₂ hydrogenation increases to -0.39 and -0.34 eV at -0.14 V vs SHE, as high Ni fractions lead to *NH2 intermediate adsorptions exceeding the optimal values. This fact, along with a possible decrease in the number of Cu sites (Figures S23 and S24), works against the formation of *NH₃, and the selectivity toward NH₃ decreases as a result.

CONCLUSIONS

This work presents the relationship between intermediate adsorption energies and NO3-RR activity on CuNi catalysts. By replacing 50% Cu with Ni, we achieved significantly improved NO₃⁻RR-to-NH₃ performance. This includes a 0.12 V upshift in the half-wave potential, a 0.2 V lower overpotential required to achieve the optimal NH₃ FE, and a 6-fold increase in NO₃⁻RR activity on Cu₅₀Ni₅₀ alloy catalysts compared to the values obtained with pure Cu at 0 V vs RHE in alkaline conditions (pH = 14). The electronic structure studies revealed an upshifting of the *d*-band center toward the Fermi level, a feature that enhances intermediate adsorption energies. This relationship was then validated by our DFT calculations, wherein we found that introducing Ni atoms moves the PDS from NO3- adsorption to *NH2 hydrogenation due to the enhanced adsorption energy of NO3⁻ on the CuNi surface and, as a result, lowers the overpotential. Our work demonstrates the effect of the *d*-band center positions and the induced adsorption properties on the NO₃-RR activity and selectivity. This work highlights a promising route to design catalysts for selective NO₃⁻RR to NH₃ conversion.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b13347.

Materials and methods; Figures S1–S24 and Tables S1–S8 (PDF)

AUTHOR INFORMATION

Corresponding Author

Edward H. Sargent – Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada; orcid.org/0000-0003-0396-6495; Email: ted.sargent@utoronto.ca

Authors

- Yuhang Wang Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada; orcid.org/0000-0001-5336-5183
- Aoni Xu Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada

- Ziyun Wang Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada; © orcid.org/0000-0002-2817-8367
- Linsong Huang Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Jun Li Department of Electrical and Computer Engineering and Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- **Fengwang Li** Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada; o orcid.org/0000-0003-1531-2966
- Joshua Wicks Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada
- Mingchuan Luo Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada
- **Dae-Hyun Nam** Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada; orcid.org/0000-0002-0871-1355
- **Chih-Shan Tan** Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada
- Yu Ding Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Jiawen Wu Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Yanwei Lum Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada
- **Cao-Thang Dinh** Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario MSS 3G4, Canada; o orcid.org/0000-0001-9641-9815
- **David Sinton** Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario MSS 3G8, Canada; • orcid.org/0000-0003-2714-6408
- **Gengfeng Zheng** Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China; orcid.org/0000-0002-1803-6955

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.9b13347

Author Contributions

[#]Y.W., A.X., and Z.W. contributed equally to this work. **Notes**

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the Ontario Research Fund - Research Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the CIFAR Bio-Inspired Solar Energy program. This research used synchrotron resources of the Advanced Photon Source (APS), an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, and was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357, and the Canadian Light Source and its funding partners. All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP) and Niagara supercomputer at the SciNet HPC Consortium. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd., Ontario Centres of Excellence, Mitacs, and 15 Ontario academic member institutions. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, Ontario Research Fund - Research Excellence, and the University of Toronto. We acknowledge the Toronto Nanofabrication Centre (TNFC) and the Ontario Centre for the Characterization of Advanced Materials (OCCAM) for sample preparation and characterization facilities. The authors thank Dr. T. P. Wu and L. Ma for technical support at the 9BM beamline of APS. D.S. acknowledges the NSERC E.W.R. Steacie Memorial Fellowship. J.L. acknowledges the Banting postdoctoral fellowship from Govt. of Canada.

REFERENCES

(1) Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. *Nature* **2008**, *451*, 293–296.

(2) Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of Earth's nitrogen cycle. *Science* **2010**, 330, 192–196.

(3) Penn State. Clean Air Act Reduces Acid Rain in Eastern United States. *ScienceDaily*, September 28, 1998. https://www.sciencedaily. com/releases/1998/09/980928072644.htm

(4) NO_x/VOC office. *NOx/VOC song fact sheet*, Canadian Council of Ministers of the Environment, Ottawa, ON, Canada, 1998. https://www.ccme.ca/files/Resources/air/emissions/pn_1257_e.pdf

(5) Moorcroft, M. J.; Davis, J.; Compton, R. G. Detection and determination of nitrate and nitrite: a review. *Talanta* **2001**, *54*, 785–803.

(6) Nolan, B. T.; Hitt, K. J.; Ruddy, B. C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. *Environ. Sci. Technol.* **2002**, *36*, 2138–2145.

(7) Ascott, M.; Gooddy, D. C.; Wang, L.; Stuart, M. E.; Lewis, M. A.; Ward, R. S.; Binley, A. M. Global patterns of nitrate storage in the vadose zone. *Nat. Commun.* **2017**, *8*, 1416.

(8) Ford, C. L.; Park, Y. J.; Matson, E. M.; Gordon, Z.; Fout, A. R. A bioinspired iron catalyst for nitrate and perchlorate reduction. *Science* **2016**, *354*, 741–743.

(9) Duca, M.; Koper, M. T. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. *Energy Environ. Sci.* **2012**, *5*, 9726–9742.

(10) Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. Nitrogen cycle electrocatalysis. *Chem. Rev.* **2009**, *109*, 2209–2244.

(11) Seraj, S.; Kunal, P.; Li, H.; Henkelman, G.; Humphrey, S. M.; Werth, C. J. PdAu alloy nanoparticle catalysts: effective candidates for nitrite reduction in water. *ACS Catal.* **2017**, *7*, 3268–3276.

(12) Butcher, D. P.; Gewirth, A. A. Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl⁻. *Nano Energy* **2016**, *29*, 457–465.

(13) Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. *Electrochim. Acta* **2017**, *227*, 77–84.

(14) Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm, P.; Schneider, W. F.; Schrock, R. R. Beyond fossil fueldriven nitrogen transformations. *Science* **2018**, *360*, No. eaar6611.

(15) Reyter, D.; Chamoulaud, G.; Bélanger, D.; Roué, L. Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. *J. Electroanal. Chem.* **2006**, *596*, 13–24.

(16) Reyter, D.; Bélanger, D.; Roué, L. Study of the electroreduction of nitrate on copper in alkaline solution. *Electrochim. Acta* **2008**, *53*, 5977–5984.

(17) Comisso, N.; Cattarin, S.; Fiameni, S.; Gerbasi, R.; Mattarozzi, L.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrodeposition of

Cu-Rh alloys and their use as cathodes for nitrate reduction. *Electrochem. Commun.* 2012, 25, 91–93.

(18) Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gambirasi, A.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. *Electrochim. Acta* 2014, 140, 337–344.

(19) Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. *Electrochim. Acta* **2013**, *89*, 488–496.

(20) Simpson, B. K.; Johnson, D. C. Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media. *Electroanalysis* **2004**, *16*, 532–538.

(21) Stamenković, V. R.; Schmidt, T. J.; Ross, P. N.; Marković, N. M. Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt_3Ni and Pt_3Co alloy surfaces. *J. Phys. Chem. B* **2002**, *106*, 11970–11979.

(22) Stamenković, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt₃Ni(111) via increased surface site availability. *Science* **2007**, *315*, 493–499.

(23) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J. Phys. Chem. B* **2004**, *108*, 17886–17892.

(24) Huang, H.; Jia, H.; Liu, Z.; Gao, P.; Zhao, J.; Luo, Z.; Yang, J.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO_2 : using Pd nanostructures as an ideal platform. *Angew. Chem., Int. Ed.* **2017**, *56*, 3594–3598.

(25) Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. *Nat. Commun.* **2014**, *5*, 4948.

(26) Theivasanthi, T.; Alagar, M. X-ray diffraction studies of copper nanopowder. *arXiv* (*General Physics*), March 31, 2010, 1003.6068. https://arxiv.org/abs/1003.6068

(27) Jha, A.; Jeong, D.-W.; Shim, J.-O.; Jang, W.-J.; Lee, Y.-L.; Rode, C. V.; Roh, H.-S. Hydrogen production by the water-gas shift reaction using $CuNi/Fe_2O_3$ catalyst. *Catal. Sci. Technol.* **2015**, *5*, 2752–2760.

(28) Hsieh, H. H.; Chang, Y. K.; Pong, W. F.; Pieh, J. Y.; Tseng, P. K.; Sham, T. K.; Coulthard, I.; Naftel, S. J.; Lee, J. F.; Chung, S. C.; Tsang, K. L. Electronic structure of Ni-Cu alloys: the *d*-electron charge distribution. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1998**, *57*, 15204–15210.

(29) Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; Garcia de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; Zou, C.; Quintero-Bermudez, R.; Pang, Y.; Sinton, D.; Sargent, E. H. CO₂ electroreduction to ethylen via hydroxide-mediated copper catalysis at an abrupt interface. *Science* **2018**, *360*, 783–787.

(30) Li, J.; Che, F.; Pang, Y.; Zou, C.; Howe, J. Y.; Burdyny, T.; Edwards, J. P.; Wang, Y.; Li, F.; Wang, Z.; De Luna, P.; Dinh, C.-T.; Zhuang, T.-T.; Saidaminov, M. I.; Cheng, S.; Wu, T.; Finfrock, Y. Z.; Ma, L.; Hsieh, S.-H.; Liu, Y.-S.; Botton, G. A.; Pong, W.-F.; Du, X.; Guo, J.; Sham, T.-K.; Sargent, E. H.; Sinton, D. Copper adparticle enabled selective electrosynthesis of n-propanol. *Nat. Commun.* **2018**, *9*, 4614.

(31) Bae, S.-E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. *J. Am. Chem. Soc.* **2007**, *129*, 10171–10180.

(32) Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 937–943.

(33) Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and Selectivity Trends in electrocatalytic nitrate reduction on transition metals. *ACS Catal.* **2019**, *9*, 7052–7064.