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ABSTRACT: In the past three years, machine learning (ML) in combination
with density functional theory (DFT) has enabled computational screening of
compounds with the goal of accelerated materials discovery. Unfortunately,
DFT+ML has, until now, either relied on knowledge of the atomic positions at
DFT energy minima, which are a priori unknown, or been limited to chemical
spaces of modest size. Here we report a strategy that we term learning-in-
templates (LiT), wherein we first define a series of space group and
stoichiometry templates corresponding to hypothesized compounds and,
orthogonally, we allow any list of atoms to take on any template. The LiT
approach is deployed in combination with previously established position-
dependent representations and performs best with the representations that rely
least on the atomic positions. Since the positions of the atoms in templates are
known and do not change, LiT enables us to infer the properties of interest
directly; additionally, LiT allows working with increased chemical spaces, since the same elements can take on a large number of
templates. Only by using LiT were we able to span 5 × 106 double-perovskite compounds and achieve an acceleration factor of
700 compared to brute-force DFT, allowing us to predict never-before-screened compounds. Our findings motivated us to
synthesize a new BaCuyTa(1−y)S3 perovskite, which we show using an electron probe microanalyzer has a 5:3 molar ratio of Cu
to Ta and, using powder X-ray diffraction (XRD) analysis combined with a DFT-based XRD simulation and fitting, indicate a
new phase having an I4/m space group.

■ INTRODUCTION

Perovskites are a family of compounds with ABX3 stoichiometry
where the B site is situated in the center of BX6 octahedra that
can be arranged in various motifs and experience a variety of
distortions/displacements.1,2 Double perovskites with the
chemical formula AByB′(1−y)X3 can accommodate two types of
B cations that often differ in their oxidation states or ratios.1 Due
to the large number of cations/anions that can adopt the
perovskite lattice,3 perovskites became one of the first families of
compounds to be the target of high-throughput simulations.4−6

It is within such large chemical spaces that accelerating high-
throughput screening using machine learning is particularly
applicable. The ultimate goal is to accelerate screening by several
orders of magnitude when compared to the use of density
functional theory (DFT) alone, while preserving the accuracy of
DFT calculations.
In a joint machine learning (ML) and DFT pipeline, one first

defines the chemical space to be considered, for instance, the
chemical space of double perovskites. A subset of this chemical
space is used to generate training data via DFT simulations.
Then, using an appropriate atomistic representation of the
compound, the DFT-calculated propertiesoften electronic
(bandgaps, valence band minima, conduction band maxima,

etc.) or thermodynamic (formation energies, energies above
hull, etc.) propertiesare machine learned.
The predictive ability of anMLmethod is assessed by its error

on the test set (the portion of DFT-calculated compounds that is
not used during training). The transferability of ML depends on
the size of the predefined chemical space, i.e., how many
compounds it can tackle. The efficiency of a DFT+ML pipeline
is quantified by the acceleration factor, i.e., the speedup due to
adding ML, which is the ratio of the total number of compounds
in the chemical space to the number of DFT-computed
calculations in the training set.
Designing a representation of atomistic systems7 is a crucial

decision in an ML study of materials. One family of
representations that has been previously applied for perov-
skites8−10 and other classes of compounds11 is atomic feature-
based representations. Here, each structure is encoded as a fixed-
length vector containing the properties of individual atoms,
ranging from solely their period and group8,11 to a carefully
selected set of over 10 features.8 This has yielded high accuracy
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toward the crystal formation energies (the highest accuracy of
0.10 eV/atom).10

This representation can be applied to structures that share an
identical crystalline lattice and stoichiometry, but the approach
fails to encode information regarding the arrangement of ions.
This restriction to a single crystalline lattice and stoichiometry
limits the transferability and acceleration of previously reported
DFT+ML pipelines. In fact, our benchmark calculations suggest
that if one is limited to the cubic chalcogenide oxide and sulfide
double A2BB′X6 perovskites with 1:1 B:B′ ratio, where B and B′
have +3 and +5 oxidation states, the total size of the chemical
space (∼104 compounds) can be explored with pure DFT at a
moderate computational cost (6 CPU years compared to the
common allocations of hundreds of CPU years on modern
supercomputers) and therefore does not justify using ML.
Representations that typically achieve high ML accuracy

(0.088 eV/atom12) rely on atomic positions: a sine matrix,7

bond fractions,13 density features,13 radial distribution func-
tions,7 the Voronoi tessellation algorithm,12,14 orbital field
matrix,15 distance-angular and element type distributions.16

Since these representations take the positions of the atoms
explicitly, they can be applied to compounds with an arbitrary
structure. Unfortunately, prior deployments of such representa-
tions have required a priori knowledge of the optimal geometry
of each structure.
In sum, prior approaches to ML have either

• been constrained to a single crystal space group, limiting
the chemical space to order 104 already accessible using
conventional full DFT; or

• spanned many space groups, but required a priori
knowledge of the true crystal lattice

We took the view that this limitation could be overcome by

• first, defining a series of templates corresponding to the
hypothesized different crystal structures a list of atoms
could potentially adopt. It would be crucial that the set of
templates fully spanned the set of known available space
groups;

• orthogonally, allowing any list of atoms making up a
hypothesized double perovskite to take on, in principle,
any one of these templates;

• using DFT to train amachine learning algorithm to predict
the formation energy for various templates that a given set
of atoms would adopt;

• ultimately, using the predictive capacity of the trained
DFT algorithm to capture the formation energy of a
perovskite, in its template, without a priori knowledge nor
assumption of the optimal space group of which the most
stable form of the crystal would be a member

We term the method learning-in-templates (LiT) and
describe herein its capacity to expand vastly the chemical
space of perovskites explored computationally due to the ability
of a given set of elements to take on any structural or
stoichiometry template. Specifically, LiT allows us to span a 5.5
× 106 chemical space not practically accessible today using full
DFT. The space spans, for the first time, structures beyond the
simple cubic lattice and compositions beyond 1:1 B:B′ ratios.
This vast expansion of the chemical space is achieved while

maintaining the ability to predict perovskite stability without

Figure 1. (A) Crystal structure of AByB′(1−y)X3 perovskites in different space groups (layered perovskite-like structure for P21/c space group) projected
along the [001] directions (up) and stereoscopic views (down). Coordination polyhedra of X atoms around B or B′ atoms are shown as octahedra.
Bold line indicates the unit cell. Structures are constructed through VESTA.10 (B) Workflow used in the present work. We define the chemical space
spanned by perovskites of 5 space groups and 4 B:B′ ratios, which contains 5.5 × 106 compounds. We use a subset of that chemical space (7.9 × 103

compounds) to performDFT calculations of perovskite formation energies and use them to train anML algorithm.ML is then used to screen the entire
chemical space and select a candidate for experimental synthesis. The experimentally synthesized compound is studied with EPMA to determine its
molar composition, and powder XRD is used to get insight into its crystal structure. DFT is then performed on the possible space groups of the
candidate compound, and the resulting optimized coordinates are used to simulate and fit powder XRD. The quality of this choice bears directly on the
predictive ability, transferability, and efficiency of the DFT+ML approach.
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prior knowledge of atomic positions. The broadened chemical
space our approach allowed us to explore in turn enabled
predictions of many new double perovskites, including
BaCu5/8Ta3/8S3, which we synthesized experimentally.

■ DISCUSSION
We consider crystal structures inspired by the most abundant
structures of the 1.1× 104 experimentally known oxide double
perovskites.1 Figure 1A shows the space groups considered in
this work: these include ̅Fm m3 , I4/m, ̅R 3 , and Pnma for the
rock-salt ordered perovskite and P21/c for layered perovskite-
like structure. Among these, ̅Fm m3 represents an aristotype
cubic perovskite with the highest symmetry; the symmetry can
be lowered by octahedra tilting and cation displacements.1,17−19

A tilt around the (001) direction leaves a 4-fold axis intact while
reducing the cubic symmetry to a tetragonal one. The most
common tetragonal space group for double perovskites is I4/m
with the Glazer tilt system a0a0c−, which indicates out-of-phase
rotations of the octahedra. Considering the special case of
a−a−a− tilting in which three axes are equally inclined to each
other, a rhombic symmetry (space group ̅R 3) is formed, as the
tilt is equivalent to a single tilt about the (111) direction of the
cubic perovskite. When considering cation displacements, the
cubic symmetry could also be reduced to orthogonal symmetry
with a space group Pnma. For these lattices, in addition to the
most commonly encountered with 1:1 B3+:B′+5 ratio, we also

consider the 3:5 ratio along with previously reported 1:220−22

and 3:223 ratios.
An additional degree of freedom we consider is the

arrangement of the B and B′ atoms within the same crystalline
lattice and the B:B′ ratio. For example, the cubic ̅Fm m3
perovskite lattice has 40 atoms, out of which 8 are B/B′ atoms.
To properly explore all possible arrangements of the 1:3 B:B′
ratio, the upper limit (not accounting for space group specific
symmetry operations) for the number of structures to be
considered is C8

2 = 28. The number of combinations could be as
large as 70 for 40-atom ̅Fm m3 and Pnma cells and therefore
significantly increases the size of the chemical space. Thus, we
construct the chemical space in the following manner:

• We considered the elements in the periodic table that
exhibit +2 oxidation states for the A site, +3 oxidation
state for the B site, +5 oxidation state for the B′ site, and
oxygen and sulfur for the X site, resulting in 10 024
compositions.

• The following ratio/space groups combinations are
considered:

• P21/c: 20-atom cell; 4 B/B′ sites; 2:2, 1:3, 3:1 ratios; total
14 combinations

• ̅Fm m3 : 40-atom cell; 8 B/B′ sites; 4:4, 3:5, 5:3, 2:6, 6:2;
total 238 combinations

Figure 2. (A) Performance of LiT compared to the optimized positions when used with different representations. The distribution of the MAE is
obtained through 5-fold cross validation. (B) Performance of the ML algorithm on test data on formation energies of perovskites with various space
groups and B:B′ ratios. (C) ML predictions of the formation energies for 2.7 × 106 oxide perovskites. Points of colors other than blue show the
formation energy ML predictions for the 1.1 × 103 known oxide perovskites with various space groups and 1:1 B:B′ ratio. (D) ML-predicted
distribution of the formation energies across various space groups and B:B′ ratios along with the exponential fits to identify the stability regions.
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• ̅R 3: 30 atoms; 6 B/B′ sites; 3:3, 2:4, 4:2; total 50
combinations

• Pnma: 40 atoms; 8 B/B′ sites; 4:4, 3:5, 5:3, 2:6, 6:2; total
238 combinations

• I4/m: 20 atoms; 4 B/B′ sites; 2:2, 1:3, 3:1; total 14
combinations

• overall 554 arrangements
• The whole space is 5.5× 106 compounds.
• The resulting chemical space is estimated to require 8.2 ×

103 CPU years with brute-force DFT, which exceeds
common annual supercomputer cluster allocations of
1000 CPU years by an order of magnitude.

We choose 7.9× 103 structures within the predefined chemical
space to be calculated with DFT to form the training set. Our
DFT calculations for the training set took approximately 12
CPU years (∼13 CPU hours per compound). The overall
acceleration factor of our DFT+ML approach is therefore∼700.
The initial positions of each of the structures were transformed
into an ML feature vector, and the formation energies were
learned with a genetic algorithm-optimized24 ML pipeline based
on random forest regression (see the Methods for a more
detailed description).
We investigated how the performance of LiT depends on the

representation of choice. Figure 2A shows the distribution of the
mean absolute error (MAE) for 5-fold cross validation for the
fingerprints that were generated using the optimal positions as
opposed to the templates. The difference in the performance of
LiT compared to the optimized positions is most pronounced
for the representations that only carry information derived from
atomic coordinates, such as the radial distribution function
(RDF, 0.26 eV/atom difference), the partial radial distrubution
function (PRDF, 0.11 eV/atom difference), and density features
(0.20 eV/atom difference). RDF does not have a notion of
atomic types; therefore with templates that share identical
atomic positions no learning is possible, which is reflected by a
∼0 r2 (see Figure S3 and Table S2r2 > 0 for the optimized
positions since the information about chemical elements is
indirectly encoded in the chemical bonds. On the other hand,
the PRDF performs better with the templates (0.11 eV/atom)
because as the atoms appear at the same positions the variations
occur consistently at the same bins and the identities of the
elements are encoded in different bin−element pairs.
The representations that are less sensitive to the positions,

such as bond fractions, orbital field matrix, and Voronoi
tessellation, show very similar performance for the optimized

positions, and the templates with the latter are slightly inferior
due to the loss of the structural information. Overall, in the study
of double perovskites, the Voronoi tessellation fingerprint gives
the lowest MAE (0.11 eV/atom) and the best performance with
LiT compared to the optimized positions (0.003 eV/atom), and
we thus use it in the results discussed below. The performance of
our approach is in line with previously reported MAE on
formation energies (Table S4); however, it offers a much higher
acceleration factor due to templating. The performance of LiT is
independent of the nature of the ions (Figure S6) and is
consistent across the templates (Figure S7), as soon as they are
equally represented in the training data. As we allowed for a
symmetry change during structural relaxation, about 12% of our
initial templates relaxed to a lower symmetry. We checked the
performance of LiT on the structures that underwent the
symmetry change and found anMAE of 0.10 eV/atom, pointing
out that LiT can still be applied even if the optimized structure
no longer belongs to the initial space group. We tested LiT on
the literature data set of 5000 single perovskites25 (Figures S9
and S10) and achieved a similar MAE. Additionally, we repeated
this analysis for the energies above hull26 in addition to the
formation energies. As expected, the energies above hull are
more challenging for an ML algorithm to learn since they have
information about the additional competing phases, whereas no
such information is contained in the input, which is reflected by a
lower r2 in 5-fold cross validation (0.86 for energies above hull
compared to 0.97 for formation energies (Figures S3 and S13)).
Despite this challenge, our model was able to achieve a lowMAE
of 0.091 eV/atom. The trends that we observe for the energies
above hull regarding the performance of LiT compared to the
optimized positions are completely analogous to those of the
formation energies (Figure S11, S12, and S13). Our model
performs well at smaller train set sizes, as reflected by a
comparison of log−log learning curve plots (Figure S14).
We use the LiT with the Voronoi fingerprint to predict the

stabilities of all of the oxide perovskites in our data set (Figure
2C). We marked our predictions green, orange, red, magenta,
and purple if the ̅Fm m3 , P21/c, I4/m, Pnma, or ̅R 3 ML
predictions corresponded to a cubic, monoclinic, tetragonal,
orthorhombic, or hexagonal/trigonal/rhombohedral oxide
double perovskite known experimentally.1 The traditionally
used Goldschmidt tolerance factor helps identify 79% by using a
0.8 to 1.0 cutoff rule. To achieve a similar level of confidence
using the ML-predicted formation energies,−2.69 eV/atom can
be used as a stability threshold since it corresponds to the 80th

Figure 3. Regions of stability of oxide double perovskites based on the ML-predicted formation energy. Elements are colored based on the number of
compounds containing that element in a given site. For the results on the sulfides, see Figure S8.
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percentile of the experimentally known oxide perovskites, which
corresponds to a total of 6111 predicted stable compositions,
which is about 6 times larger than the number of currently
experimentally known oxide perovskites (for a similar analysis
on energies above hull, see Figure S15).
We find that on average oxide perovskites are 1.01 eV/atom

more stable than the sulfide ones (Figure 2D). This difference is
most pronounced for the cubic perovskites ( ̅Fm m3 , −1.14 eV/
atom) and least pronounced for the perovskites with a
monoclinic structure (−0.91 eV/atom) (Figure 2, D). The
most stable (5% percentile) oxide double perovskites have a
hierarchy of stability, namely, ̅R 3 < Pnma ≅ I4/m < ̅Fm m3 ≅
P21/c for oxides and ̅R 3 < Pnma ≅ I4/m ≅ P21/c < ̅Fm m3 for
sulfides. This indicates that for both sulfides and oxides
additional relaxation of the cubic structure to lower symmetries
can decrease the total energy of the system by up to 0.15 and
0.18 eV/atom for sulfides and oxides, respectively. Interestingly,

the most stable oxides and sulfides behave differently with regard
to the B:B′ ratio. On average, the oxides are less sensitive to the
B:B′ ratio (standard deviation of 0.05 eV/atom) compared to
the sulfides (0.09 eV/atom), with 1:2 being the most stable and
1:3 being the least stable for both oxides and sulfides.
Perovskites can be divided into islands of stability according

to their formation energy (Figure 2C). In fact, fitting each of the
distributions in Figure 2C with three Gaussian functions enables
us to identify the centers and the width of stabilities. Using the
oxide perovskites in the I4/m space group as an example we
define the region of most stable perovskites (−4 to −2.5 eV/
atom), the perovskites with average stability (−2.5 to −0.8 eV/
atom), and the unstable perovskites (−0.8 to 1.0 eV/atom). We
then filtered out the number of compounds with particular
elements that fall into each of the regions (Figure 3).
We find that the most stable perovskites are comprised of

alkali earth elements (mostly Ba, Sr, and Ca) in the A site, rare

Figure 4. (A, B) Backscattered electron SEM image with spots for WDS analysis of the samples with the precursor ratio of (A) Cu:Ta = 1:1 and (B)
Cu:Ta = 5:3. Spots were marked in different colors for discrimination of different phases. Red circle: BaCu1/3Ta2/3S3 phase; green circle: new
BaCu5/8Ta3/8S3 phase; blue circle: amorphous phase containing Ba, Cu, and S. (C) Experimental XRD spectrum (orange) of the Ba−Cu−Ta−S
sample along with the fitting based on the previously reported BaCu1/3Ta2/3S3 and DFT-optimized BaCu5/8Ta3/8S3 structure. The weighted mixture
also includes the alternative DP space groups and the stable compounds on the Ba−Cu−Ta−S quaternary phase diagram.
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earth elements in the B site, and Nb and Ta in the B′ site. In the
average stability region, elements from groups 12 and 14
constitute the A site, Ce and group 13 constitute the B site, and
V and group 15 are responsible for the B′ site. This region also
shows the limitations of using the formation energy as a stability
indicator since, for example, P (in the B′ site) oxide perovskites
are predicted to have average stability, but there is no indication
of such compounds in over 50 years of experimental literature.
The least stable perovskites have mostly elements in their rare
oxidation states (Se2+ and Te2+ in the A site) and nonmetals in
the B′ site (nitrogen). These trends are in general agreement
with a recent single perovskite study.27

The stability of the individual sulfides is linearly dependent on
the stability of corresponding oxides (Figure S1): a simple linear
fit yielded an r2 of >0.81 for all space groups and B:B′ ratios. In
all cases, the slope of the linear fit is less than 1 (varies from 0.81
for the Pnma group to 0.92 for the ̅Fm m3 group, 0.83 for 1:2
ratio to 0.90 to 3:5 ratio (Figure S2)), indicating that the gap
between the oxides and sulfides shrinks as the stability decreases.
In fact, certain sulfides in the region of average stability
occasionally become more stable than corresponding oxides. An
example is V and Sb (in the B′ site) based Ni−Fe, Ni−Co, and
Co−Fe perovskites. This indicates that one might be able to
synthesize these sulfide double perovskites from the correspond-
ing oxides.
To verify the functionality of our ML+DFT approach in

practical applications, we synthesized a new stable perovskite
compound.We chose BaCuxTa(1−x)S3 (Figure 2D, green points)
since its average predicted formation energy is −1.35 eV/atom,
which is within the 7.9% topmost stable sulfides, and it is
composed of earth-abundant elements. We note that this
perovskite has not been predicted previously: the noninteger
B:B′ ratio combined with the lower symmetry space group this
material possesses has resulted in this material hitherto being
obscured. This is to our knowledge the first demonstrated
synthesis of an ML-predicted perovskite, demonstrating the
practicality of ML for use in next-generation materials discovery.
We performed a solid synthesis reaction20 (see Methods for a

description) and analyzed the resulting compound with an
electron probe microanalyzer (EPMA) equipped with wave-
length dispersive spectrometers (WDS) and powder X-ray
diffraction (XRD) to confirm its composition and crystal
structure, respectively. We initially performed the synthesis of
the target compound BaCuxTa(1−x)S3 using the 1:1 B:B′
stoichiometry of the precursors and used WDS to confirm its
composition. We chose to use WDS because (a) its beam size
and penetration depth (1 μm, and sub-μm to 20 μm
correspondingly) matched well the size of phase regions that
we obtained (20−50 μm) and (b)WDS has been widely used in
the past for composition studies of sulfide compounds.28,29

Additionally, WDS providedmore reliable and consistent results
compared to laser ablation inductively coupled plasma mass

spectrometry (LA-ICP-MS) due to the limitations of the latter
to determine stoichiometric amounts of sulfur given a
commonly used internal standard (silicate glass doped with
trace amounts of sulfur).
WDS spot analysis of sample 1 (Figure 4A and Table 1)

showed three well-defined phases with different elemental mole
ratios. Phase 1 is the hexagonal BaCu1/3Ta2/3S3 (further
confirmed with XRD) reported by Bu et al.20 In this phase,
the molar ratio of Cu and Ta is 1:2. Phase 2 contains all four
precursor elements in the molar ratio of Ba:[Cu/Ta]:S = 1:1:3,
which suggests a new perovskite phase. The Cu and Ta are off-
stoichiometric with a calculated molar ratio of 5.007:2.993. This
ratio is consistent across multiple electron beam shots and is
likely 5:3, resulting in the chemical composition BaCu5/8Ta3/8S3.
Phase 3 contains Ba, Cu, and S and is likely amorphous, as the

molar ratio of Ba, Cu, and S varies with the Cu:Ta precursor
ratio (Table 1). Each phase also contains a negligible portion of
oxygen, which could be attributed to surface oxygen adsorption
and partial substitution of S sites in the lattice. We then repeated
the synthesis with a 5:3 Cu:Ta precursor ratio (sample 2), and
the WDS spot analysis showed similar results with all three
phases present.
To gain further insight on the crystal structure of the newly

identified BaCu5/8Ta3/8S3 phase, we performed powder XRD
analysis of sample 2 (Figure 3C, orange). Due to a high
complexity of getting structural information directly from the
powder XRD pattern, we used DFT models to help identify the
peaks. Our simulations (see method description for more
information) showed that the experimentally observed peaks
can be fitted using a combination of a previously reported P63/
mmc phase, a new double-perovskite phase, and minor portion
of BaS phase. The P21/c and I4/m space groups give similar
contributions (12% and 9%, respectively) to the overall
spectrum and can be used to fit the double-perovskite portion.
While both space groups are equally probable based on XRD
fitting, DFT calculations indicate that the I4/m phase is more
(by 0.27 eV/atom) stable than the P21/c phase, and therefore,
we think that the newly synthesized compound forms the I4/m
lattice. Given that the compound has a perovskite structure, the
Cu:Ta molar ratio of 5:3 suggests the average oxidation state of
Cu would be +3.33, indicating that there is a mixture of Cu(III)
and Cu(IV) or Cu(II) and Cu(IV). While these are rare
oxidation states for Cu, mixed Cu(III)/Cu(IV) have previously
been found in oxide perovskites.30,31

■ CONCLUSIONS
In sum, the unified DFT+ML strategy employed herein to find
new perovskite compounds enabled a useful MAE of 0.11 eV/
atom with an exceptionally high acceleration factor of 700. This
enabled us to explore a never-before-tested chemical space of
perovskites, expanding our search across five different space
groups and four B:B′ stoichiometric ratios. Leveraging the wide

Table 1. Summary of WDS Spot Analysis Resultsa

Cu/Ta precursor ratio spots Ba mol % Cu mol % Ta mol % S mol % O mol %

phase 1: BaCu1/3Ta2/3S3 1:1 3 20.07 6.23 14.38 57.02 2.28
5:3 37 19.90 6.08 14.49 56.33 3.20

phase 2: BaCu5/8Ta3/8S3 1:1 3 20.12 13.26 8.01 56.81 1.77
5:3 28 19.89 13.23 7.91 56.49 2.44

phase 3: Ba−Cu−S 1:1 4 16.28 29.97 1.40 51.47 0.88
5:3 8 8.96 50.96 0.00 38.94 1.13

aMole percentages of each element are average values of all effective spots.
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array of new compounds predicted, we validated our approach
by synthesizing a new phase of BaCu5/8Ta3/8S3 double
perovskite, with an I4/m perovskite lattice, demonstrating the
direct applicability of ML as a tool for the discovery of new
optoelectronic materials.

■ METHODS
First-Principles Calculations. We used ground-state DFT with

the Perdew−Burke−Ernzerhof (PBE)32 GGA exchange−correlation
functional as implemented in the Vienna ab Initio Simulation Package
(VASP)33 to perform structural optimization of the perovskites. All
calculations allowed for spin polarization. We used a plane wave energy
cutoff of 520 eV and Gaussian smearing (0.05 eV wide) to converge the
electronic problem. The Monkhorst−Pack k-point mesh of 2 × 2 × 2
(density >900/atom) and the force convergence criterion of 0.0005
eV/atom × N atoms in the unit cell were used as implemented in the
MPRelaxSet class of the Pymatgen python package.26,34,35 The
structures of the double perovskites were prepared using the ASE36

python module, and the structure templates for various space groups
were taken from the literature.17,37,38 Structure optimizations allowed
for a change in the crystal symmetry. The calculated total energies were
then transformed into formation energies using the energies of the
isolated atoms as a reference, as implemented in Pymatgen.
Machine Learning. To represent the atomistic systems, we

employed the Voronoi tessellation algorithm as implemented in
Magpie12 through the Catlearn39 python interface, resulting in a 1x271
feature vector for each data point (a discussion on the relative
importance of structural vs Voronoi tessellation attributes can be found
in ref 12). All other representations were prepared using the Matminer
python package.13 We optimized our ML algorithms using a genetic
algorithm optimization of the architecture of a random forest based
regressor as implemented in the TPOT24 python module. We used 20
generations with a population size of 20 architectures for all
representations. If the feature vector length exceeded 300 elements,
which was the case with PRDF and the Orbital Field Matrix, we kept
only the first 300 principal components to train the regression model.
The MAE and the r2 of 5-fold cross validation for various
representations are presented in Tables S1 and S2, and Figures S2
and S3 show the performance on select samples. The performance of a
number of classical regression algorithms40 is given in Table S3 for
comparison.
XRD Simulation and Fitting. In order to identify the peaks in the

powder XRD spectrum, we used atomic positions from DFT
calculations to simulate the XRD peak positions and intensities using
the Xrayutilities41 python module. For our analysis, we randomly
sampled six structures for each of the space groups of the
BaCuxTa(1−x)S3 perovskite. Additionally, we augmented this list with
23 stable compounds on the quaternary Ba−Cu−Ta−S phase diagram.
We then performed the least-squares fitting as implemented in the
lmfit42 pythonmodule of the experimental XRD spectrum using a linear
combination of the simulated spectra as well as the experimental
spectrum reported in ref 20. In the fitting the spectra were allowed to
scale (by a factor of 0.01 to 100) and move as a whole (with the bounds
of −0.2 to 0.2 to account for the error in the DFT-predicted lattice
parameters). The results for the fit are Pnma: 0.07, I4/m: 0.09, ̅R 3: 0.04,

̅Fm m3 : 0.04, P21/c: 0.12, phase 1: 0.74.
Synthesis of Double Perovskites. To synthesize as-predicted on-

stoichiometric compound Ba2CuTaS6, BaS powder (99.7%, Alfa
Aesar), Cu powder (99.999%, Alfa Aesar), Ta powder (99.98%, Alfa
Aesar), and S powder (99.5%, Alfa Aesar) were mixed in a fused-silica
tube in a molar ratio of BaS/Cu/Ta/S = 2:1:1:4. The tube was
evacuated to 2.7 Pa (20 mTorr), sealed, heated to 700 °C at 60 °C/h,
and kept for 48 h. The tube was then cooled slowly (3 °C/h) to 400 °C
before the furnace was turn off. For the off-stoichiometry compound
BaCu5/8Ta3/8S3, the molar ratio of precursors changed to BaS/Cu/Ta/
S = 8:5:3:24, while the heating profile remained the same. Both
products are black porous bulk.
WDS Spot Analysis. Compositions of the synthesized products

were quantitatively evaluated with a JEOL JXA-8230 electron probe

microanalyzer, equipped with five wavelength dispersive spectrometers,
housed in the Earth Sciences Department, University of Toronto. The
as-prepared bulk products were first embedded in epoxy pucks,
polished to 1 μm or better with a monocrystalline diamond suspension,
and then carbon coated before characterization.

An accelerating voltage of 15 kV, a beam current of 10 nA, and a
focused beam were used to analyze Ba, Cu, S, Sb, Ta, Ce, Y, and O in all
the synthesized products (Sb, Ce, and Y are not included in the Ba−
Cu−Ta−S samples but are analyzed due to other samples unrelated to
this work). A counting time of 20 s on peak and 10 s on each side of the
background were used for all the analyses. Spot positions were chosen
such that the chemical composition was identical at a region with a
radius of at least 20 μm. According to such criteria, we chose three main
phases for WDS spot analysis, and each phase contains at least three
spots. For each spot, mass percentages of each element were collected
and translated to molar percentages if the total mass percentage falls
into 100 ± 1.5%. Table 1 summarizes the average molar ratio of each
detected element in each phase. Apart from the four precursor
elements, each phase also contains a small portion of oxygen, which
could be attributed to surface oxygen adsorption and partial
substitution of S sites in the lattice.

XRD Analysis. Crystal structures of the products were investigated
with a Phillips PW1830 powder X-ray diffractometer at the University
of Toronto. Cu Kα radiation (λ = 1.5406 Å), coupled with a Ni filter
between the X-ray source and the sample, was employed as the incident
beam, and a xenon gas proportional detector was used for all the XRD
scans. Scanning range was set to be between 13° and 67° (2θ), which
covers all the major feature peaks for the possible phase members, with
a step size of 0.02° (2θ) and a dwell time of 1.25 s per step.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.8b13420.

Supplementary figures as well as the instructions on the
details of the EPMA and XRD analyses as well as data to
reproduce the figures and the demo-code. (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*ted.sargent@utoronto.ca
ORCID
Mikhail Askerka: 0000-0003-3134-6496
Edward H. Sargent: 0000-0003-0396-6495
Author Contributions
§M. Askerka and Z. Li contributed equally to the work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
E.H.S. and all coauthors from the Department of Electrical and
Computer Engineering at the University of Toronto acknowl-
edge the financial support from the Ontario Research Fund−
Research Excellence Program, the Natural Sciences and
Engineering Research Council of Canada (NSERC), and the
support from the Global Research Outreach program of
Samsung Advanced Institute of Technology. DFT computations
were performed on the Niagara supercomputer at the SciNet
HPC Consortium38 and the Blue Gene SOSCIP/IBM (South-
ern Ontario Smart Computing Innovation Platform, funded by
the Federal Economic Development Agency of Southern
Ontario, the Province of Ontario, IBM Canada Ltd., Ontario
Centres of Excellence, Mitacs and 15 Ontario academic member
institutions). SciNet is funded by the Canada Foundation for

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b13420
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

G

http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13420/suppl_file/ja8b13420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13420/suppl_file/ja8b13420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13420/suppl_file/ja8b13420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13420/suppl_file/ja8b13420_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.8b13420
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13420/suppl_file/ja8b13420_si_001.pdf
mailto:ted.sargent@utoronto.ca
http://orcid.org/0000-0003-3134-6496
http://orcid.org/0000-0003-0396-6495
http://dx.doi.org/10.1021/jacs.8b13420


Innovation under the auspices of Compute Canada, the
Government of Ontario. M.I.S. acknowledges the support of
Banting Postdoctoral Fellowship Program, administered by the
Government of Canada. We thank Prof. Oleksandr Voznyy for
helpful discussions.

■ REFERENCES
(1) Vasala, S.; Karppinen, M. A2B′ B ″O6 perovskites: a review. Prog.
Solid State Chem. 2015, 43, 1−36.
(2) Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical
considerations. Acta Crystallogr., Sect. B: Struct. Sci. 1997, 53, 32−43.
(3) Reller, A.; Williams, T. Perovskites: Chemical Chameleons. Chem.
Br. 1989, 25, 1227−1230.
(4) Castelli, I. E.; Olsen, T.; Datta, S.; Landis, D. D.; Dahl, S.;
Thygesen, K. S.; Jacobsen, K. W. Computational screening of
perovskite metal oxides for optimal solar light capture. Energy Environ.
Sci. 2012, 5, 5814−5819.
(5) Armiento, R., Kozinsky, B., Hautier, G., Fornari, M., Ceder, G.
High-throughput screening of perovskite alloys for piezoelectric
performance and thermodynamic stability, Phys. Rev. B: Condens.
Matter Mater. Phys. 2014, 89, DOI: 10.1103/PhysRevB.89.134103.
(6) Castelli, I. E., Thygesen, K. S., Jacobsen, K. W. Bandgap
engineering of double perovskites for one-and two-photon water
splitting, MRS Online Proc. Libr. 2013, 1523, DOI: 10.1557/
opl.2013.450.
(7) Schutt, K. T., Glawe, H., Brockherde, F., Sanna, A., Muller, K. R.,
Gross, E. K. U. How to represent crystal structures for machine
learning: Towards fast prediction of electronic properties, Phys. Rev. B:
Condens. Matter Mater. Phys. 2014, 89, DOI: 10.1103/Phys-
RevB.89.205118.
(8) Schmidt, J.; Shi, J.; Borlido, P.; Chen, L.; Botti, S.; Marques, M.A.
Predicting the Thermodynamic Stability of Solids Combining Density
Functional Theory and Machine Learning. Chem. Mater. 2017, 29,
5090−5103.
(9) Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.;
Ramprasad, R.; Gubernatis, J. E.; Lookman, T. Machine learning
bandgaps of double perovskites. Sci. Rep. 2016, 6, 19375.
(10) Pilania, G.; Gubernatis, J. E.; Lookman, T. Multi-fidelity machine
learning models for accurate bandgap predictions of solids. Comput.
Mater. Sci. 2017, 129, 156−163.
(11) Faber, F. A.; Lindmaa, A.; von Lilienfeld, O. A.; Armiento, R.
Machine Learning Energies of 2 Million Elpasolite (ABC(2)D(6))
Crystals. Phys. Rev. Lett. 2016, 117, DOI: 10.1103/PhysRev-
Lett.117.135502.
(12) Ward, L.; Liu, R.; Krishna, A.; Hegde, V. I.; Agrawal, A.;
Choudhary, A.; Wolverton, C. Including crystal structure attributes in
machine learning models of formation energies via Voronoi
tessellations. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96,
024104.
(13) Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N. E.; Bajaj,
S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M.; Chard, K.
Matminer: An open source toolkit for materials data mining. Comput.
Mater. Sci. 2018, 152, 60−69.
(14) Ward, L., Agrawal, A., Choudhary, A., Wolverton, C. A general-
purpose machine learning framework for predicting properties of
inorganic materials, Npj Comput. Mater. 2016, 2, DOI: 10.1038/
npjcompumats.2016.28.
(15) Lam Pham, T.; Kino, H.; Terakura, K.; Miyake, T.; Tsuda, K.;
Takigawa, I.; Chi Dam, H. Sci. Technol. Adv. Mater. 2017, 18, 756−765.
(16) Faber, F. A.; Christensen, A. S.; Huang, B.; von Lilienfeld, O. A.
Alchemical and structural distribution based representation for
universal quantummachine learning. J. Chem. Phys. 2018, 148, 241717.
(17) Barnes, P. W.; Lufaso, M. W.; Woodward, P. M. Structure
determination of A(2)M(3+)TaO(6) and A(2)M(3+)NbO(6)
ordered perovskites: octahedral tilting and pseudosymmetry. Acta
Crystallogr., Sect. B: Struct. Sci. 2006, 62, 384−396.

(18) Glazer, A. The classification of tilted octahedra in perovskites.
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, 28,
3384−3392.
(19) Lufaso, M. W.; Barnes, P. W.; Woodward, P. M. Structure
prediction of ordered and disordered multiple octahedral cation
perovskites using SPuDS. Acta Crystallogr., Sect. B: Struct. Sci. 2006, 62,
397−410.
(20) Bu, K.; He, J.; Wang, D.; Zheng, C.; Huang, F. Crystal structure
of the mixed-metal tris-ulfide BaCu1/3Ta2/3S3. Acta Crystallogr. E
Crystallogr. Commun. 2017, 73, 713−715.
(21) Park, H. M.; Lee, H. J.; Cho, Y. K.; Nahm, S. Crystal structures of
(Ba 1− x La x)[Mg (1+ x)/3 Nb (2− x)/3] O 3 with 0.9≤ x≤ 1.0. J.
Mater. Res. 2003, 18, 1003−1010.
(22) Ivanov, S.; Eriksson, S.-G.; Tellgren, R.; Rundlof, H. Evolution of
the atomic and magnetic structure of Sr3Fe2WO9: A temperature
dependent neutron powder diffraction study.Mater. Res. Bull. 2001, 36,
2585−2596.
(23) Zeng, Z.; Fawcett, I. D.; Greenblatt, M.; Croft, M. Large
magnetoresistance in double perovskite Sr2Cr1.2Mo0.8O6-δ. Mater.
Res. Bull. 2001, 36, 705−715.
(24) (a) Olson, R. S.; Moore, J. H. InWorkshop on Automatic Machine
Learning; 2016; pp 66−74. (b) Olson, R. S.; Moore, J. H. In Evaluation
of a Tree-based Pipeline Optimization Tool for Automating Data Science;
Proceedings of GECCO, 2016; pp 485−492.
(25) Emery, A. A.; Wolverton, C. High-throughput DFT calculations
of formation energy, stability and oxygen vacancy formation energy of
ABO3 perovskites. Sci. Data 2017, 4, 170153.
(26) Balachandran, P. V., Emery, A. A., Gubernatis, J. E., Lookman, T.,
Wolverton, C., Zunger, A. Predictions of new ABO(3) perovskite
compounds by combining machine learning and density functional
theory. Phys. Rev. Mater.2018, 2, DOI: 10.1103/PhysRevMateri-
als.2.043802.
(27) Versavel, M. Y.; Haber, J. A. Thin-film growth of low temperature
lead antimony sulfide plagionite phases. Chem. Commun. (Cambridge,
U. K.) 2006, 3543−3545.
(28) Feng, K.; Zhang, X.; Yin, W.; Shi, Y.; Yao, J.; Wu, Y. New
Quaternary Rare-Earth Chalcogenides Ba Ln Sn2Q6 (Ln= Ce, Pr, Nd,
Q= S; Ln= Ce, Q= Se): Synthesis, Structure, and Magnetic Properties.
Inorg. Chem. 2014, 53, 2248−2253.
(29) Darracq, S.; Kang, S.; Choy, J.; Demazeau, G. Stabilization of the
Mixed Valence Cu (III)/Cu (IV) in the Perovskite Lattice of La1-
xSrxCuO3 under High Oxygen Pressure. J. Solid State Chem. 1995, 114,
88−94.
(30) Demazeau, G.; Darracq, S.; Choy, J. High oxygen pressures and
the stabilization of a new mixed valence Cu (III)/Cu (IV). High
Pressure Res. 1994, 12, 323−328.
(31) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(32) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Phys. Rev. B:
Condens. Matter Mater. Phys. 1996, 54, 11169−11186.
(33) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone
integrations. Phys. Rev. B 1976, 13, 5188−5192.
(34) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A.
Commentary: The Materials Project: A materials genome approach to
accelerating materials innovation. APL Mater. 2013, 1, 011002.
(35) Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.;
Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python
Materials Genomics (pymatgen): A robust, open-source python library
for materials analysis. Comput. Mater. Sci. 2013, 68, 314−319.
(36) Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E.,
Christensen, R., Dulak,M., Friis, J., Groves,M. N., Hammer, B., Hargus,
C., Hermes, E. D., Jennings, P. C., Jensen, P. B., Kermode, J., Kitchin, J.
R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard, S., Maronsson, J.
B., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C.,
Schiotz, J., Schutt, O., Strange, M., Thygesen, K. S., Vegge, T.,
Vilhelmsen, L., Walter, M., Zeng, Z. H., Jacobsen, K. W. The atomic

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b13420
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1103/PhysRevB.89.134103
http://dx.doi.org/10.1557/opl.2013.450
http://dx.doi.org/10.1557/opl.2013.450
http://dx.doi.org/10.1103/PhysRevB.89.205118
http://dx.doi.org/10.1103/PhysRevB.89.205118
http://dx.doi.org/10.1103/PhysRevLett.117.135502
http://dx.doi.org/10.1103/PhysRevLett.117.135502
http://dx.doi.org/10.1038/npjcompumats.2016.28
http://dx.doi.org/10.1038/npjcompumats.2016.28
http://dx.doi.org/10.1103/PhysRevMaterials.2.043802
http://dx.doi.org/10.1103/PhysRevMaterials.2.043802
http://dx.doi.org/10.1021/jacs.8b13420


simulation environment-a Python library for working with atoms, J.
Phys.: Condens. Matter 2017, 29, 273002.
(37) Saines, P. J.; Kennedy, B. J.; Elcombe, M. M. Structural phase
transitions and crystal chemistry of the series Ba(2)LnB ’ O-6 (Ln =
lanthanide and B ’ = Nb5+ or Sb5+). J. Solid State Chem. 2007, 180,
401−409.
(38) Radaelli, P. G.; Iannone, G.; Marezio, M.; Hwang, H. Y.; Cheong,
S. W.; Jorgensen, J. D.; Argyriou, D. N. Structural effects on the
magnetic and transport properties of perovskite A(1-x)A(x)’MnO3 (x
= 0.25, 0.30). Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56,
8265−8276.
(39) CatLearn.
(40) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn:Machine learning in Python. J. Machine Learning Res. 2011,
12, 2825−2830.
(41) Kriegner, D.; Wintersberger, E.; Stangl, J. Xrayutilities: a versatile
tool for reciprocal space conversion of scattering data recorded with
linear and area detectors. J. Appl. Crystallogr. 2013, 46, 1162−1170.
(42) Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola,
A., Nelson, A. LMFIT: non-linear least-square minimization and curve-
fitting for Python. Astrophysics Source Code Library 2016, https://
zenodo.org/record/11813#.XEuJ1s9KhTZ.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b13420
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

I

https://zenodo.org/record/11813#.XEuJ1s9KhTZ
https://zenodo.org/record/11813#.XEuJ1s9KhTZ
http://dx.doi.org/10.1021/jacs.8b13420

