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Dopant-tuned stabilization of intermediates
promotes electrosynthesis of valuable C3 products
Tao-Tao Zhuang1,2,5, Dae-Hyun Nam 1,5, Ziyun Wang 1,5, Hui-Hui Li1,2, Christine M. Gabardo 3, Yi Li2,

Zhi-Qin Liang1, Jun Li 1,3, Xiao-Jing Liu2, Bin Chen1, Wan Ru Leow1, Rui Wu2, Xue Wang 1, Fengwang Li 1,

Yanwei Lum1, Joshua Wicks1, Colin P. O’Brien3, Tao Peng1, Alexander H. Ip1, Tsun-Kong Sham4,

Shu-Hong Yu 2, David Sinton 3 & Edward H. Sargent 1*

The upgrading of CO2/CO feedstocks to higher-value chemicals via energy-efficient elec-

trochemical processes enables carbon utilization and renewable energy storage. Substantial

progress has been made to improve performance at the cathodic side; whereas less progress

has been made on improving anodic electro-oxidation reactions to generate value. Here we

report the efficient electroproduction of value-added multi-carbon dimethyl carbonate

(DMC) from CO and methanol via oxidative carbonylation. We find that, compared to pure

palladium controls, boron-doped palladium (Pd-B) tunes the binding strength of inter-

mediates along this reaction pathway and favors DMC formation. We implement this doping

strategy and report the selective electrosynthesis of DMC experimentally. We achieve a

DMC Faradaic efficiency of 83 ± 5%, fully a 3x increase in performance compared to the

corresponding pure Pd electrocatalyst.
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The cathodic carbon dioxide (CO2) reduction reaction has
seen rapid progress of late, including in the production of
CO, methane, formic acid, ethylene, ethanol, and propa-

nol1–8. At present, most electrochemical anodic side reactions
have utilized the oxygen evolution reaction (OER).

Anodic reactions offer, in principle, valuable upgrades of waste
products and lower-value commodity chemicals; yet have seen
less exploration in electrocatalysis9–12. In anodic chemical
upgrade reactions, a particularly important challenge is to achieve
selective electro-oxidation to the desired valuable product, instead
of overoxidizing the inputs all the way to CO2.

Industrial effluent streams and steel flue gas contain CO, a
high-energy feedstock that nonetheless commands a low market
value13–15. The impressive progress of CO2-to-CO using elec-
trocatalysis further motivates exploring ways to upgrade CO
produced from CO2 to more valuable products.

Here we explore coupling methanol and CO via electro-
chemical oxidative carbonylation to dimethyl carbonate16–18

(DMC, Eq. (1)). This enables the production of a valuable C3
compound—one already industrially important as a fuel additive,
as a polar solvent, and as an environmentally sustainable inter-
mediate for the upgrade of several promising renewables19,20. The
global market for DMC will exceed $500M USD by 202521 and
our technoeconomic assessment (TEA, Supplementary Figs. 1, 2,
and Table 1) indicates a production cost of US$1200/ton for
DMC from total chemical+ renewable electricity inputs to be
~US$600/ton.

To catalyze the electrosynthetic pathway

2CH3OHþ CO� 2e� ! CH3Oð Þ2COþ 2Hþ ð1Þ
palladium (Pd)-based electrodes achieve methanol carbonylation
with CO22,23, but suffer from the formation of by-products, such
as dimethyl oxalate, lowering the DMC selectivity.

We first investigated the reaction steps with the goal of further
understanding mechanism; and then used these insights to

engineer catalysts to increase selectivity to DMC production. We
utilized density functional theory (DFT) to explore what controls
the binding strength of intermediates on the catalyst along the
methanol-CO to DMC pathway. Our findings motivate us to
attempt the doping of Pd to tune intermediate binding energies to
favor DMC formation, a strategy we implemented experimen-
tally, allowing us to achieve high-faradaic-efficiency conversion to
DMC. This work suggests further potential in interstitial doping
to promote oxidation-based carbon upgrade reactions using
renewable feedstocks.

Results
Computational studies. We first investigated, using computa-
tional studies, the reaction of methanol-CO to DMC on Pd(111).
The DMC formation reaction begins with CO adsorption to form
CO* (Fig. 1a) and the dissociation of CH3OH into CH3O*
(Fig. 1b). These intermediates undergo coupling to form
CH3OCO* (Fig. 1c). DMC is then generated through the for-
mation of a C–O bond between CH3OCO* and another CH3O*.
The dissociation of CH3OH is the only step among these that
involves electron transfer (implicated in proton coupled electron
transfer)24. We then evaluated the effect of applied potential on
the reaction using the computational hydrogen electrode of
Nørskov and co-workers25 and applied 1 V vs. SHE toward DMC
electrocatalytic formation16.

The energy profile (Fig. 1d and Supplementary Table 2)
indicates strong binding of the adsorbed CO* and the dissociated
CH3O* on pure Pd. It is so strong as to render further coupling of
CO* and CH3O* unfavorable. The barriers associated with the
C–O bond formation steps including OC–OCH3 (TS1) and
CH3O–C(O)OCH3 (TS2) are 1.49 and 0.82 eV (Fig. 1d and
Supplementary Fig. 4), respectively, indicating that coupling is
also unfavorable kinetically. Clearly, tuning the binding strength
of the catalyst has the potential to improve DMC formation.
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We investigated boron doping of Pd in the context of the
anodic oxidative carbonylation reaction (Fig. 1e–g, Supplemen-
tary Fig. 3 and Supplementary Tables 3–5). The results (Fig. 1d)
reveal that boron doping controls the adsorption of both CO* and
CH3O*, rendering the energies of intermediates along the
reaction process downhill toward CH3OCO* formation. Further-
more, the barriers are 0.57 eV for TS1 and 0.28 eV for TS2 on
boron-doped palladium (Pd–B), which are significantly lower
compared to those on Pd (Fig. 1d), thus indicating increased
selectivity to DMC electrosynthesis on Pd–B (Fig. 1h).

Catalyst synthesis and characterization. Experimentally we
prepare Pd–B interstitial nanoalloys (Fig. 2a, details in the
“Methods” section). We used scanning electron microscopy

(SEM), transmission electron microscopy (TEM), and high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) (Fig. 2b–d) to examine the morphology and
size of the resultant Pd–B. We obtained a dendritic Pd–B mor-
phology comprised of nanoparticles ranging in diameter from 5
to 10 nm.

From TEM, the Pd–B lattice spacing is 0.227 nm (Fig. 2e),
larger than that of pure Pd (0.222 nm, Supplementary Fig. 5),
consistent with lattice expansion when B atoms penetrate into the
Pd lattice. Powder X-ray diffraction (PXRD) confirms the same
trend: the diffraction peak of Pd–B shifts to a lower 2θ value
compared to that of the Pd control (Fig. 2f)26,27. X-ray
photoelectron spectroscopy (XPS) confirms the change in the
electronic structure of Pd via B-doping as seen in the slight shift
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of Pd 3d-binding energy (Fig. 2g), while electron energy loss
spectroscopy (EELS) mapping reveals that Pd and B are
uniformly distributed in the Pd–B sample (Fig. 2h).

We tuned the B concentration inside the Pd nanocrystals by
varying the precursor ratio between Pd and B (see the “Methods”
section). The sample retained a similar size and shape as we
increased B content, and lattice fringes expanded and the
diffraction peak shifted further (Supplementary Figs. 6 and 7).

We then investigated, using operando X-ray absorption
spectroscopy28 (XAS), the stability of Pd–B during DMC
electroproduction, investigating both pure Pd and Pd–B electro-
catalysts (Fig. 3). We probed the local environment in the vicinity
of the Pd atoms by tracking changes in X-ray absorption near
edge structure (XANES) and extended X-ray absorption fine
structure (EXAFS) spectra. These were measured during anodic
reaction under a potential of 1.4 V vs. Ag/AgCl in 0.1 M NaClO4/
methanol electrolyte with continuous CO gas flowing.

Pd K-edge XANES of pure Pd and Pd–B electrocatalysts
revealed no evident change in Pd valence state during the reaction
(Fig. 3a). We found that the electrode composition was stable
across the reaction time (XPS, Supplementary Fig. 8). When we
compared the average oxidation state of Pd at 1.4 V vs. Ag/AgCl,
the XANES linear combination fitting of Pd–B resulted in +0.68
as an average oxidation state, which is higher than the average
oxidation state of pure Pd, +0.59 (Supplementary Table 6). Both
pure Pd and Pd–B showed lower oxidation states than the +2 of
PdO. We attribute the higher Pd oxidation state of Pd–B to
bonding between Pd and B.

Using EXAFS to acquire information on atomic bonding near
the Pd atom (Fig. 3b and c), we found that Pd–B has a lower
Pd–Pd coordination number (Pd: 10.4, Pd–B: 9.7) and longer
Pd–Pd interatomic distance (Pd: 2.747 Å, Pd–B: 2.776 Å)
compared to that of pure Pd (Fig. 3d, e) during electrocatalytic
DMC production when B is present (Supplementary Fig. 9). Pd–B
fitting of EXAFS (Pd–B coordination number: 1.98, Pd–B

interatomic distance: 2.115 Å) indicates the same trend. We
conclude that the interstitial B doping in the Pd lattice is stable
across reaction times studied herein.

Electrochemical oxidation reaction investigations. We depos-
ited catalysts onto carbon paper via spray coating (see the
“Methods” section) and characterized the electrochemical
CO–methanol oxidative carbonylation activity and selectivity
toward DMC using a three-electrode H-cell configuration. We
first measured cyclic voltammograms (CV) of the anodes to study
electrocatalytic carbonylation. In nitrogen-purged electrolytes
(0.1 M NaClO4/methanol), we observed a broad oxidation peak
(Ox-1) for all Pd–B samples at ca. 1.2 V that we ascribe to the
electrochemical oxidation of Pd0 to Pd2+ with methanol (Eq. (2),
Fig. 4a left, and Supplementary Fig. 10)23. A steep increase in
current was seen at potentials higher than 1.5 V (Ox-2) owing to
direct methanol oxidation (Eqs. (3) and (4))22. Upon bubbling
and saturation of the solution with CO, the oxidative insertion of
CO into methanol occurred (broad oxidation peak at ca. 1.5 V,
Ox-3)29. This implied DMC formation (Fig. 4b), and the product
was further evaluated by gas chromatography with flame-
ionization detection and gas chromatography with mass spec-
trometry (GC-FID and GC-MS, Supplementary Figs. 11 and 12),
respectively. CO–methanol oxidative carbonylation suppressed
the Pd electrode self-oxidation evidenced by XAS data in Fig. 3a,
and it also shifted the large current of direct methanol oxidation
to more positive potentials (>1.8 V).

Pd0 þ 2CH3OH ! Pd2þ CH3O
�ð Þ2 þ 2Hþ ð2Þ

3CH3OH� 2e� ! CH3Oð Þ2CH2 þ 2Hþ þH2O ð3Þ

2CH3OH� 4e� ! HC Oð ÞOCH3 þ 4Hþ ð4Þ
We then evaluated the CO–methanol oxidation performance in
the potential range of 1.0–1.6 V versus Ag/AgCl (CO–methanol
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coupling region) in 0.1 M NaClO4/methanol. In this way we
would investigate further the effect of the B dopant on DMC
selectivity. Compared to pure Pd, all Pd–B samples showed
higher DMC selectivity (Fig. 4c and Supplementary Table 8). At
1.4 V vs. Ag/AgCl, we achieved Faradaic efficiency of 83 ± 5% for
DMC using the Pd–B(iii) catalyst.

This DMC production represents a three-fold improvement in
selectivity compared to unmodified Pd (Supplementary Table 8
and 9). We analyzed the B dopant amount through inductively
coupled plasma mass spectrometry (ICP–MS, Supplementary
Table 10) and report as a result the B doping present in the
catalyst (Fig. 4d) and correlate this descriptor with high DMC
electrosynthesis.

Discussion
Selective electroproduction of the C3 liquid chemical DMC from
lower-value CO and methanol was achieved by oxidative carbo-
nylation with the aid of a new boron-doped palladium electro-
catalyst. Boron improved DMC selectivity verified through DFT
calculations, material structure analysis, and electrochemical
measurements. This work offers an avenue to upgrade carbon via
electro-oxidation that could be applied to electrolyzers to achieve

high-value products from both the cathodic and the anodic
reactions. Ultimately, tandem electrocatalytic cathode–anode
systems uniting CO2-to-CO (cathodic reduction) with CO-to-
DMC (anodic oxidation) stand to offer integrated DMC pro-
duction from CO2.

Methods
DFT calculations. In this work, all DFT calculations were carried out with a
periodic slab model using the Vienna ab initio simulation program (VASP)30

(https://www.vasp.at/). Detailed theoretical methods can be found in Supplemen-
tary Methods.

Catalyst synthesis. Pd–B nanoparticles31 were prepared via the rapid chemical
reduction reaction between palladium chloride (PdCl2, Sigma-Aldrich) and sodium
borohydride (NaBH4, Sigma-Aldrich). PdCl2 (89 mg) was dissolved in 2.5 mL
deionized (DI) water. The B dopant concentration was controlled by dissolving
NaBH4 in 12.5 mL DI water (62.5, 250, 500, 1000 mg). NaBH4 solution was placed
in PdCl2 solution. After the reaction between PdCl2 and NaBH4, the Pd–B
nanoparticles were washed using DI water. After centrifuging, Pd–B nanoparticles
were dried in a vacuum oven overnight. Pure Pd nanoparticles were prepared using
hydrazine (N2H4, Sigma-Aldrich) as a reducing agent for PdCl2 instead of NaBH4.

Working electrode preparation and oxidation measurements. To prepare
electrodes, we deposited 10 mg of catalyst mixed with 20 μl of 5 wt% Nafion in
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1 mL methanol on a carbon gas-diffusion layer with loading ca. 1 mg cm−2 using
an air-brush spray coater.

Electrocatalytic measurements were carried out in a three-electrode system
using an electrochemical station (PGSTAT204, Metrohm Autolab). Electrolysis was
carried out in a two-compartment electrochemical H-cell with a proton exchange
membrane (Nafion 117) as the separator. All potentials were measured against a
Ag/AgCl reference electrode (3 M KCl, BASi) and a platinum counter electrode. In
the H-cell, the electrolyte was 0.1 M NaClO4/methanol saturated with CO, which
was delivered into the anodic compartment at a rate of 30.00 standard cubic
centimeters per minute (s.c.c.m.).

Dimethyl carbonate analysis. The reacted solution was collected and quantitative
analysis. The dimethyl carbonate (DMC) product was carried out using a capillary
gas chromatograph (PerkinElmer Clarus 580 and Clarus SQ 8C with FID and MS
detectors, respectively) with Stabilwax column (fused silica, Restek). The Faradaic
efficiency (FE) of DMC was calculated from the total amount of charge Q (in units
of C) passed through the sample and the total amount of the DMC produced n (in
moles). Q= I × t, where I (in amperes) is the oxidation current at a specific applied
potential and t is the time (in seconds) for the constant oxidation current.

The FE of the DMC is calculated as follows:

FEDMC ¼ 2 ´ F ´
nDMC

Q
´ 100% ¼ 2 ´ F ´

nDMC

ðI ´ tÞ ´ 100% ð5Þ

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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