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A global effort seeks to design electrochemical reactors that 
selectively reduce carbon dioxide (CO2) at high reaction 
rates and energy efficiencies. The design of a CO2 electroly-

ser that operates at current densities >200 mA cm−2 and voltages 
<3 V will be required to provide the efficiency, selectivity, robust-
ness and economic viability required for industrial applications1,2. 
The membrane, a core component of CO2 electrolyser technology, 
must facilitate ion transport between the anode and cathode and 
chemically isolate the two half-cell reactions.

Electrochemical CO2 reduction has been achieved in several 
reactor architectures, including the zero-gap reactor (or membrane 
electrode assembly) originally developed for low-temperature water 
electrolysis and fuel-cell systems1,3,4. The zero-gap reactor con-
tains a cathode and anode pressed tightly onto opposite sides of a 
10–150-μm-thick ion exchange membrane. Ohmic losses are mini-
mized by decreasing the distance between these electrodes in the 
zero-gap reactor. These reactors also alleviate mass transport limita-
tions that arise in aqueous CO2 feedstocks, and continuously deliver 
gaseous CO2 through a gas diffusion electrode (GDE) for reaction at 
the membrane/cathode interface1. The anode is typically fed with an 
aqueous electrolyte (for example, KOH, KHCO3, H2O) to perform 
the oxygen evolution reaction.

Three broad classes of membranes that have been tested in CO2 
flow reactors include anion exchange membranes (AEMs)5, cation 
exchange membranes (CEMs)6 and bipolar membranes (BPMs)7. 
The choice of membrane in zero-gap reactors will affect the pH on 
both sides of the membrane, thereby affecting reactant availability 
and reaction potentials for the cathodic and anodic reactions. CEMs 
generally transport cations from an acidic anode to the cathode and 

AEMs transport anions from a basic cathode to the anode. BPMs 
enable the dissociation of H2O and transport H+ to the cathode and 
OH– to the anode under ‘reverse bias’ (that is, anion exchange layer 
facing the anode and cation exchange layer facing the cathode), or 
transport H+ from the anode and OH– from the cathode and form 
water at the centre of the membrane under ‘forward bias’ (that is, 
anion exchange layer facing the cathode and cation exchange layer 
facing the anode)8.

As discussed in more detail below, there is a reaction between 
the CO2 and the locally generated OH− at the cathode, producing 
HCO3

– and CO3
2–. These HCO3

– and CO3
2– anions are conducted 

through the AEM to the locally acidic anode, where the CO2 is 
released with the electrochemically produced oxygen gas (Fig. 1a). 
This reaction necessitates a second CO2 capture step to recycle the 
CO2 from the anode gas, an additional energy expense that would 
not be required with a BPM or CEM electrolyser (Fig. 1b). Although 
there may be an additional balance of plant cost associated with 
recycling CO2 from the anode outlet, the selectivity and energy effi-
ciency — unparalleled in PEM or BPM systems — may outweigh 
this penalty. Learnings from analogous water electrolysis systems 
show that the cost of electrolytic fuel production is highly sensitive 
to electricity consumption or energy efficiency9; however, a detailed 
technoeconomic analysis should be performed to confirm this is 
the case for the CO2 reduction reaction (CO2RR). Further, alterna-
tive anodic reactions could be explored that have both liquid-phase 
reactants and products (for example, glycerol oxidation) and the 
CO2 could simply be separated by phase rather than a capture unit.

Zero-gap CO2RR reactors containing AEMs have demonstrated 
stable, high efficiencies (that is, selectivities >90% and cell voltages 
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<3 V for >100 h) at high current densities (>200 mA cm–2). In an 
AEM, positively charged functional groups on the polymer chain 
facilitate anion transport from the cathode to the anode, enabling 
the CO2RR to occur in a basic environment due to the generation 
of hydroxide. AEM reactors may be more suitable for CO2 reduction 
than CEM and reverse-bias BPM systems because a basic environ-
ment decreases the thermodynamic driving force for the competing 
hydrogen evolution reaction by decreasing the concentration of H+ 
at the catalyst surface. Forward-bias BPM systems also enable a basic 
environment for the CO2RR, but have demonstrated limited stability 
due to the delamination of the two membranes10. Silver, gold and cop-
per heterogeneous catalysts, as well as molecular metal porphyrins, 
deposited on GDEs have been used in these AEM-based zero-gap 
reactor configurations for high conversion efficiencies to CO and 
multicarbon products (for example, C2H4, C2H5OH, CH3COO−)5,11–13.

The efficiency of ion transport processes in membranes has 
been examined extensively in the context of water electrolysis14, 
but far less so in CO2RR. The lack of understanding of how mem-
brane properties affect CO2RR efficiency and selectivity motivates 
the need to explore these relationships15. Here we discuss AEMs in 
zero-gap reactors. We highlight desired properties of AEMs for the 
CO2RR, review current state-of-art materials and propose key areas 
for future research.

Principles of AEMs for CO2 reduction
An ideal AEM conducts OH− at high rates from the cathode to the 
anode. AEMs contain hydrophilic cation groups that are anchored 
as side chains or directly incorporated into the hydrophobic poly-
mer backbone16. There exist several different AEM structures that 
are reviewed comprehensively elsewhere17–21. Here we focus on 
those most relevant to the CO2RR5,22.

The transport of anions and water through dense AEMs are 
enabled by water-filled hydrated ionic domains in the polymer 
matrix. While the mechanism of anion transport through AEMs is 
still debated, there are two dominant transport mechanisms: vehic-
ular transport and Grotthuss hopping (Fig. 2)23,24.

Grotthuss hopping is the propagation of OH− through the 
hydrogen-bond network of water molecules by the formation and 
cleavage of covalent bonds with the neighbouring molecules24. 
Vehicular transport includes both the concentration gradient-driven 
diffusion and electromigration mechanisms. Diffusion occurs 
in response to a concentration gradient, and electromigration of 
charged species occurs in response to an electrical potential gradient. 
While the driving forces for diffusion and electromigration are dif-
ferent, both mechanisms depend on the diffusion coefficient of ions 
transported through the membrane25. The structure and water con-
tent of the AEM influence the diffusion coefficient of ions. Both hop-
ping and vehicular transport mechanisms require free, also known 
as unbound, water within the membrane (that is, hydrated domains 
or water pools with limited hydration interactions with the backbone 
and side chains). In a membrane with low hydration levels, the sol-
vation of the ionic groups does not facilitate unbound water. In that 
case, the hopping mechanism is not active, vehicular transport is cur-
tailed and the ionic conductivity of the membrane will be low23,24. In 
a highly hydrated membrane, the ionic domains are water filled and 
typically enlarged. Ion transport will occur through the free water 
(that is, Grotthuss hopping), and the ionic conductivity of the mem-
brane will be high23,24. Excess water can also decrease the overall mate-
rial conductivity, wherein the membrane swells to the point where ion 
mobility is maximum but the concentration of ions decreases due to 
dilution, and conductivity decreases with further hydration26.

The management of water has emerged as an important factor 
influencing the performance of the CO2RR, as it is for AEM fuel 
cells27,28. Water is a reactant in the conversion of CO2, but excess 
water will block CO2 diffusion to the catalyst, and the reaction will 
favour the hydrogen evolution reaction. Water can be delivered 
to the CO2 catalyst in a zero-gap reactor from a humidified gas 
stream and/or from the membrane. Diffusion, electro-osmotic drag 
and convection describe the different modes of transport of water 
across the membrane (Fig. 2)29. Water can diffuse from the anode 
to the cathode in response to a concentration gradient between the 
aqueous anode environment and the gas-fed cathode. Water is also 
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Fig. 1 | AEM CO2 electrolyser configuration and balance of plant. a, A schematic of a CO2 electrolyser. b, A process diagram showing the required balance 
of plant for a large-scale AEM electrolyser.
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drawn from the cathode to the anode through electro-osmotic drag 
as solvated anions migrate towards the anode30. Back convection 
of water from the cathode to the anode is driven by the increased 
liquid pressure associated with using hydrophobic cathode GDEs31 
and by the higher water permeation through thinner membranes32. 
The uncharged liquid CO2RR products follow the same transport 
mechanisms as water, whereas the charged liquid CO2RR products 
follow the anionic transport mechanisms. The net amount of water 
transported to the electrocatalyst following each of these mecha-
nisms depends on the microstructure and chemical properties of 
the membrane, as well as the operating conditions. Thus, a holis-
tic view of materials performance, cell construction and operat-
ing conditions is needed to achieve the water balance required for 
high-performance CO2RR.

The properties of commercially available and experimental 
AEMs have been reported in the context of fuel-cell and water elec-
trolyser conditions, but there are currently no protocols or metrics 
established for CO2RR electrolysers. Ion exchange capacity (IEC) 
and the chemical composition of the membrane influence water 
uptake, mechanical strength, ion conductivity and water transport 
of the membrane. We highlight two key characterization metrics — 
ion conductivity and water uptake measurements — that are criti-
cal to the performance and may impact the chemical stability and 
long-term device performance of AEMs for CO2RR.

Ionic conductivity is an important contributor to the full cell 
voltage of CO2 electrolysers. Through-plane conductivity is more 
relevant than in-plane conductivity because anion transport occurs 
predominantly through the thickness of the membrane. However, 
the accurate measurement of through-plane conductivity using 
a.c. impedance is challenging and requires a specialized cell and 
a correction for non-membrane resistances (for example, the sur-
face impedance between the membrane and electrodes). A simpler 
two-electrode set-up measuring anion conductivity (σ in S cm−1, 
equation (1)) in the in-plane direction is commonly employed with 
the assumption that conductivity in an AEM is isotropic33. Here con-
ductivity is calculated from the resistance of the membrane (Rmem 
in Ω) obtained from the high-frequency data in the Nyquist plot, 
the cross-sectional membrane area (A = width of the sample × the 
membrane thickness, in units of cm2) and the distance between the 
two working electrodes (L in units of cm):

σ ¼ L
Rmem ´A

ð1Þ

Recently, a technique for accurate measurement of hydroxide 
conductivity was reported that involves measuring the conductiv-
ity during water splitting, wherein hydroxide ions produced at the 
cathode purge the other anions34. However, measuring the OH– 
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conductivity is not relevant in CO2 electrolysers because the pri-
mary charge carrier in AEMs is CO3

2– based on the high pH (>11) at 
the cathode10,35,36. The CO3

2– conductivity of AEMs should therefore 
be measured in the future to benchmark the performance of newly 
synthesized AEMs for CO2 electrolysers. While Nafion has been 
widely used as the benchmark membrane in PEM devices, so far 
there is no analogous benchmark AEM that can serve for compari-
son with newly developed AEM materials.

High-ionic-conductivity membranes (>60 mS cm–1) are enabled 
by high IEC, which is defined as the number of exchangeable cat-
ion groups per dry weight of polymer (milliequivalent per gram). 
This allows a continuous network of water channels upon hydra-
tion without excessive water swelling. IEC can be measured using 
titration (for example, Mohr method, acid/base), an ion-selective 
electrode and spectroscopy (for example, ultraviolet–visible, NMR); 
however, there are variations among IECs measured using each pro-
cedure, and the IEC depends on the chemical composition of the 
membrane18.

Water in the AEM is essential for anion transport through the 
AEM, but high water content can cause the membrane to swell exces-
sively, compromising mechanical integrity and inducing stresses37. 
The water content of the AEM is related to the water uptake prop-
erty, which is the percentage increase in the mass of the AEM when it 
is fully equilibrated in liquid or water vapour relative to a dry state38. 
This property is also a measure of the free volume in the polymer 
matrix available for water and ion transport. Considering ionic con-
ductivity, IEC and water uptake together, the water uptake of the 
membrane is a key parameter that ultimately determines membrane 
performance, as described in a number of papers that provide a fun-
damental view of how these water-absorbing solid-state electrolytes 
behave39–42.

Remaining challenges for implementation of AEMs in CO2 
electrolysers
Early reports of AEM-based CO2 electrolysers used membranes 
that were originally developed for electrochemical applications 
under mild pH conditions such as electrodialysis for desalination, 
waste-water treatment and mineral refining6,43–45. However, major 
operational challenges have been encountered when using these 
membranes in AEM-based CO2 electrolysers. First, product and 
reactant crossover to the anode is a prominant issue. Negatively 
charged CO2RR products (for example, HCOO−) are readily trans-
ported across the positively charged AEM, while neutral products 
(for example, ethanol) are also able to cross over through sorption 

into and subsequent diffusion through the membrane46. Moreover, 
the reaction between the CO2 feed and CO2RR-generated OH– pro-
duces HCO3

– and CO3
2–, which reduces the amount of free CO2 avail-

able to the catalyst. The generated HCO3
− and CO3

2− also diffuse 
through the AEM to the anode electrolyte and are converted back 
to a substantial volume of CO2, often exceeding the amount of CO2 
converted to the target product (60% of total CO2 is neutralized)35.

Water management is crucial for AEM-based zero-gap reactors 
to balance water as a proton source for CO2RR and prevent flood-
ing47,48. Thin (20 μm), low-water-uptake (~40%) AEMs have been 
shown to mitigate cathode flooding and improve CO2RR perfor-
mance. Cathode flooding is also linked to salt precipitation at the 
cathode49,50. Water is a medium for the transport of K+ from the 
anode electrolyte (which is often KOH or KHCO3) to the cath-
ode, thus reacting with CO2 to form crystals (for example, KHCO3, 
K2CO3) that block the pores of the GDE5,48. The use of pure water 
at the anode reduces KHCO3 and K2CO3 crystal formation at the 
expense of ionic conductivity and cell potential.

Another major operational issue is the mechanical and chemi-
cal stability of commercial AEMs. A commercially available elec-
trodialysis AEM that is chemically stable up to a pH of 10 has been 
used previously. However, AEM-based CO2 electrolysers operate at 
a higher pH (>11) than electrodialysis systems because OH– ions 
are electrochemically generated at the cathode13,35,48. Although there 
is buffering at the cathode in the presence of CO2, pH at the cath-
ode increases largely at high current densities. This incompatibility 
between the operational requirements of a CO2 electrolyser and the 
chemical properties of many existing AEMs is a root cause of lim-
ited cell stability (Fig. 3). Finally, zero-gap CO2 electrolysers tend to 
suffer from low energy efficiencies. There are very few examples of 
cells that achieve high current densities >200 mA cm−2 at cell volt-
ages <3 V (Fig. 3). The high measured cell voltages are largely due 
to interfacial and ohmic losses in AEM zero-gap CO2 electrolysers51. 
Improvements in CO2RR performance have been realized with the 
recent developments of AEMs tailored for gas-phase CO2 electroly-
sis experiments, but there remains room for membrane innovations 
to bring these systems closer to commercial viability.

Sustainion, an N-methylimidazolium-functionalized styrene 
polymer (Fig. 4a), is an AEM designed for gas-fed CO2 electrolysers 
in the presence of electrolyte (10 mM KHCO3)52. This membrane 
features a high OH– conductivity (102 mS cm–1 at 80 °C in 1 M KOH), 
possesses a high IEC (2.52 meq g−1), displays substantial water 
uptake (80%) and is thin (50 μm)53. The high conductivity of this 
membrane was maintained in a CO2 electrolyser with a humidified  
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gaseous CO2 feed and a circulating aqueous anolyte of 10 mM 
KHCO3 at the anode, while reaching commercially relevant cur-
rent densities (200 mA cm–2) and sustaining >95% CO selectivity 
at 3 V for 3,800 h. Many studies have since followed this approach 
in gas-fed CO2 electrolysers11,13,54,55. However, Sustainion is prone to 
crossover of CO2RR products (for example, ethanol), particularly at 
the high current densities relevant to commercial operation13.

A quaternary ammonium poly(N-methyl-piperidine-co-p- 
terphenyl) (QAPPT) was also introduced as another candidate AEM 
material for gas-fed CO2 electrolysers (Fig. 4b)22. QAPPT exhibits a 
higher OH– conductivity (137 mS cm–1 at 80 °C) and is more chemi-
cally stable in high pH solutions than Sustainion at elevated tem-
peratures (>80 °C) because the polymer is made of aryl ether-free 
polymer backbone and a long alkyl-tethered ammonium head 
group21,22,56,57. The high conductivity of QAPPT eliminates the need 
to humidify the CO2 feed or to use an ionically conductive anolyte 
(that is, the authors used pure water at the anode). With an oper-
ating cell temperature of 60 °C, the QAPPT-containing CO2 elec-
trolyser demonstrated the highest current density reported so far 
(500 mA cm–2) with an Faradaic efficiency for CO (FECO) of >90% 
and a cell voltage (Ecell) of 3 V. This result motivates further research 
on incorporating QAPPT for use in C2+-producing systems, and the 
potential to address other persistent challenges for previous AEMs 
in CO2 electrolysers. In a recent study, this piperidinium-based 
AEM has been reported to have an amorphous structure with no 
detectable ionic group aggregation58.

These two case studies illustrate the importance of fabricating 
advanced AEMs with characteristics that match the requirements 
of CO2 electrolysers. While commercially available AEMs suffer 
from low OH– conductivities and poor stabilities in a high pH range 
(10–15), Sustainion and QAPPT exhibit high ionic conductivities 
and alkali stabilities compatible with CO2 electrolysis. Table 1 lists 
the desired properties for an AEM used in a zero-gap CO2RR reac-
tor. The IECs and thicknesses of both Sustainion (IEC, 2.52 meq g−1; 
thickness, 50 µm) and QAPPT (IEC, 2.65 meq g−1; thickness, 25 µm) 
align with the desired properties for AEMs in CO2 electrolysers as 

highlighted in Table 1. As in the case of QAPPT, it is important for 
AEMs to maintain chemical and mechanical integrity at higher 
operating cell temperatures (up to 80 °C) and with added electro-
lyte, where CO2RR kinetics are improved22. It is encouraging to see 
some high-performance AEMs becoming available commercially. 
For example, Aemion (IEC, 2.1 meq g−1; thickness, 60 µm) is an 
emerging AEM that exhibits a higher chemical resistance to etha-
nol compared with Sustainion13. Recently commercialized polyaro-
matic AEM Orion has also demonstrated excellent performances in 
hydrogen fuel cells and water electrolysis21.

Binders for CO2RR AEM electrolyser catalyst layers
Binders are often added to catalyst layers to improve the mechanical 
durability and prevent catalyst delamination from the GDE. Using 
ionomers as binders enhances the ion conductivity and provides 
access for the reactants, CO2 and water, and facilitates removal of 
anions to and from the catalyst. At present, anion exchange ion-
omers, cation exchange ionomers and polytetrafluoroethylene 
(PTFE) are all commonly used as binders in the cathode and anode 
catalyst layers of AEM zero-gap reactors.

Anion exchange ionomer binders allow for the best integration 
of ion transport with the membrane, creating a more cohesive ion 
transport path that has allowed for cell voltages <3 V (refs. 5,22,59). The 
commercially available anion exchange ionomers, based on similar 
polymers as the corresponding AEMs, suffer from many of the same 
shortcomings: limited commercially available options with high pH 
resistance, mechanical instability and water accumulation. Cation 
exchange ionomer binders have shown to increase the mass trans-
port of CO2 along the hydrophobic backbone, which allows for a 
larger catalytically active surface area and leads to an increase in the 
current density60–62. This phenomenon has also allowed for cell volt-
ages <3 V in an AEM zero-gap reactor55,63. These cation exchange 
ionomers have many more commercially available options that are 
chemically and mechanically stable. A binder developed specifically 
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structures of polystyrene tetramethyl imidazolium chloride (PSTMIM) 
commercialized as Sustainion (a) and QAPPT (b) AEMs.

Table 1 | Desired properties for AEMs for CO2RR

Parameter Required 
specification

Transport properties Area specific 
resistance

<0.1 Ω cm2 
(<0.02 Ω cm2 ideal)

Through-plane 
OH− conductivity

60–100 mS cm−1

Thickness 5–100 µm

IEC >1.5 meq g−1

Mechanical properties Elongation at break ε > 1.5

Young’s modulus E ≈ 0.25 GPa

Ultimate tensile 
strength

U ≈ 20 MPa

Water uptake 50–80%

In-plane swelling <15% (ideally <10%)

Chemical properties pH range 10–14

Temperature 20–80 °C

Stability Insoluble in 10 wt% 
alcohol

Crossover Minimal gas/liquid 
product crossover 
(<0.2%)

Testing conditions Time >1,000 h

Voltage <3 V cell voltage

Current density 200–2,000 mA cm−2
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for CO2RR would combine the ionic conductivity of anion exchange 
binders with the mass transport of cation exchange binders, while 
meeting all of the requirements outlined in Table 1.

Future direction on design of AEMs for CO2 reduction
Designing new AEMs specific for CO2RR cells is integral to real-
izing a commercially viable zero-gap CO2 reactor. The engineering 
of effective CO2RR membranes should focus on reducing product 
and CO2 crossover, increasing chemical and mechanical stability, 
and reducing interfacial and other resistive losses in the zero-gap 
reactors. While membrane design and operational strategies can be 
translated from allied electrochemical technologies, new membrane 
materials and morphologies will need to be developed to address 
the distinct challenges for CO2RR and meet the desired properties 
listed in Table 1. Here we outline some proposed approaches that 
could be applied to zero-gap AEM reactors for CO2RR (Figs. 5–7).

Product and CO2 crossover. The water uptake of the membrane 
is a key parameter that can modulate the undesired crossover of 
CO2RR products through the AEM41,42,64. The transport of neutral 
CO2 reduction product species through the membrane is directly 
related to the membrane water volume fraction because the diffu-
sion coefficient is much higher in water-filled ionic domains. To 
decrease neutral liquid product crossover, AEMs can be tailored 
to have low water uptake (Fig. 5), where water (that is, the proton 
source) for the CO2RR must be supplied by the humidification of 
the CO2 stream. In a membrane with low water uptake, there will 
generally be less mixing of the liquid products with water and less 
drag to the anode. Despite the lack of free water in the membrane, 
a high IEC could maintain high anion conductivity. Moreover, a 
membrane and a cathode ionomer engineered to have a low water 
uptake and high IEC could aid in reducing HCO3

−/CO3
2− crossover 

through the membrane by limiting the amount of aqueous CO2 
present within the membrane, and therefore reducing the reac-
tion with OH−. Chemically modifying the surface of the AEM with 
functional groups could also selectively trap or repel liquid products 
from the membrane while allowing for water and ions to be trans-
ported. Functional groups that change the size of the free volume 
elements within the membrane (that is, sterically hinder product 
crossover) or functional groups that can chemically interact with 

the product (for example, with the alcohol groups on ethanol) 
could reduce crossover. However, to incorporate product-blocking 
functional groups on the surface of the membrane, ion-conducting 
functional groups will be displaced. It is therefore important to 
minimize the number of replaced ion-conducting functional groups 
to maintain high anion conductivity. Solid additive materials (for 
example, silica nanoparticles and carbon nanotubes) have also been 
incorporated into direct methanol fuel-cell membranes to prevent 
methanol crossover and a similar approach should be pursued for 
the CO2RR65,66.

Another strategy to mitigate crossover is to operate the zero-gap 
electrolyser with a differential pressure between the cathode and 
anode. A higher pressure at the anode can decrease water convec-
tion from the cathode to anode, and thus, reduce product transport 
through convecting drag. Under these high-pressure differential 
conditions, the AEM would have to be designed to remain mechani-
cally stable and the cathode would need to be engineered to prevent 
flooding.

Chemical and mechanical stability. The lifetime of CO2RR elec-
trolysers is currently limited by the degradation of the AEMs — a 
coupled chemical and mechanical process (Fig. 6). Because AEMs 
typically require a high IEC (for example, >2.0 meq g−1) to achieve 
sufficient anion conductivity, they tend to swell and are mechani-
cally weaker than Nafion (that is, AEMs exhibit lower tensile 
strength and elongation at break). The hygroscopic nature of an 
AEM results in a high water uptake to provide the required water 
to the cathode from the anolyte. Chemical crosslinking, through 
the creation of ionic or covalent bonds between different chains 
of polymer backbones, can provide high-dimensional stability for 
membranes and improve the tensile strength67–69. Further, mechani-
cal reinforcement can be incorporated through the use of polymer 
blends70, co-deposition of ionomers with composite nanofibre 
mats71 or by casting the ionomers over high-strength porous mesh 
or scaffolds69. These strategies, coupled with robust chemical stabil-
ity of the material, can lead to long-lived CO2RR reactors.

The electrochemical generation of OH– ions at the cathode 
from CO2RR necessitates AEMs that are chemically stable at high 
pH (up to 14)72. Under this highly basic environment, the polymer 
backbone73 and cation headgroups74 are susceptible to attack by the 
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OH– ions that leads to polymer backbone cleavage and nucleophilic 
displacement or elimination reactions, respectively. The presence 
of hydroxide combined with oxygen can generate organic per-
oxides and hydroperoxides, through radical reactions, leading to 
the oxidation of the polymer backbone and chain scission75. This 
chemical attack ultimately leads to reduced anion transport and a 
loss of membrane mechanical integrity. Innovative polymer syn-
thesis strategies to enhance chemical stability by protecting both 
of these susceptible areas (for example, the shielding of backbones 
through steric hindrance or making more chemically resistant func-
tional groups against intermediate oxygen species) are critical for 
long-term CO2RR device stability (Fig. 6)21. An additional consid-
eration is to create AEMs that remain robust in the presence of all 

CO2RR products of interest, and particularly ethanol and higher 
alcohols. Anion exchange ionomers, which serve as binders at the 
catalyst layer, are often soluble in alcohol solvents for convenient 
electrode fabrication. However, AEMs should be designed to be 
insoluble in these solvent systems since concentrated alcohols (eth-
anol, n-propanol) can be products of the CO2RR. Next-generation 
AEMs should be engineered to remain chemically and mechanically 
robust under CO2 electrolysis conditions.

Interfacial and ohmic losses. Most membrane electrode assemblies 
for zero-gap CO2RR devices are fabricated by manually compress-
ing a hydrated membrane between a cathode and anode. In these 
configurations, the cathode and anode catalysts may not have the 
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requisite intimate contact needed for efficient ion transfer from the 
electrodes to the membrane. Many similar electrochemical tech-
nologies have overcome these interfacial losses by applying heat and 
pressure through hot pressing, fabricating catalyst-coated mem-
branes (CCMs), and direct membrane deposition (DMD)76,77, phys-
ically depositing the ionomers that form the membrane directly 
on the gas diffusion cathode (Fig. 7). These techniques have not 
yet been widely tested in CO2RR devices primarily because most 
commercially available AEMs are fragile, the catalyst layer cracks 
and swells when coated directly on the membrane, and there is a 
limited library of ionomers available to directly deposit on GDEs. 
Increasing the processability of commercially available AEMs 
would greatly reduce the interfacial losses in zero-gap CO2RR sys-
tems, thus improving energy efficiency.

Due to these difficulties with processing anion exchange iono-
mers, many recent AEM water electrolysers use dilute K2CO3 elec-
trolytes to increase the ionic conductivity of the anode–membrane 
interface and improve the stability by reducing the hydroxide con-
centration in the membrane78. However, if the AEM is not ade-
quately selective for anions, the transport of K+ will slowly increase 
the evolution of CO2 from the carbonate anolyte, reducing the con-
ductivity of the anolyte over time. Similar to tuning the catholyte 
composition (cations, anions, pH, organic additives and so on) 
in liquid-filled reactors, the surface or bulk functional groups of 
membranes can be tuned to control the local reaction environment 
at the catalyst to improve the energetic efficiency of the CO2RR79. 
For example, pyridinium-based functional groups incorporated at 
the membrane surface could modulate pH and improve CO2RR 
selectivity (Fig. 7)80. Improving the energy efficiency of CO2RR 
electrolysers will be contingent on designing AEMs that can be 
integrated with membrane electrode assembly best practices and 
are precisely tuned to create local environments at the catalysts that 
favour CO2RR.

Conclusions
The relevance of near-ambient-temperature CO2RR electrolysis 
hinges on the advancement of anion exchange membranes. AEMs 
need to be specifically tailored for the CO2RR because the reactants, 
products and operating conditions differ from other electrolyser 
technologies that make use of them. The next generation of AEMs 
should address these challenges while targeting the metrics listed in 
Table 1. Satisfying these requirements is a challenge — altering one 
membrane property will most often alter other membrane proper-
ties. It will be important to overcome these trade-offs to design the 
best possible membrane tailored for each CO2RR application (gas 
product, liquid product, CO2 or CO as a reactant).
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