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Closed-Loop Error-Correction Learning Accelerates
Experimental Discovery of Thermoelectric Materials

Hitarth Choubisa, Md Azimul Haque, Tong Zhu, Lewei Zeng, Maral Vafaie,

Derya Baran,* and Edward H. Sargent*

The exploration of thermoelectric materials is challenging considering the
large materials space, combined with added exponential degrees of freedom
coming from doping and the diversity of synthetic pathways. Here, historical
data is incorporated, and is updated using experimental feedback by
employing error-correction learning (ECL). This is achieved by learning from
prior datasets and then adapting the model to differences in synthesis and
characterization that are otherwise difficult to parameterize. This strategy is
thus applied to discovering thermoelectric materials, where synthesis is
prioritized at temperatures <300 ©C. A previously unexplored chemical family
of thermoelectric materials, PbSe:SnSb, is documented, finding that the best
candidate in this chemical family, 2 wt% SnSb doped PbSe, exhibits a power
factor more than 2x that of PbSe. The investigations herein reveal that a
closed-loop experimentation strategy reduces the required number of
experiments to find an optimized material by a factor as high as 3x compared
to high-throughput searches powered by state-of-the-art machine-learning
(ML) models. It is also observed that this improvement is dependent on the
accuracy of the ML model in a manner that exhibits diminishing returns: once

gradient leads to the generation of electric
current.l!! Their capacity to convert waste
heat to electricity provides a route to recover
the energy lost in mechanical and electrical
processes.l?] Today’s best-performing ther-
moelectric materials are particularly effec-
tive at high temperatures; and thus fur-
ther progress is necessary to enable en-
ergy harvesting in low-temperature con-
sumer applications such as IoT devices and
wearables.>* The design and discovery of
thermoelectric materials is challenging in
view of the large chemical space,>®! non-
convex composition-property mapping!’!
and nonlinear effects of dopants on mate-
rial properties.[®?]

Large-scale chemical space searches
for materials with desired properties have
been pursued using high-throughput
density functional theory (DFT) based

a certain accuracy is reached, factors that are instead associated with ing (ML)

experimental pathways begin to dominate trends.

1. Introduction

Thermoelectric materials convert thermal energy to electricity
based as described using the Seebeck effect, wherein a thermal
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simulations!'®l  and machine learn-
based property prediction
searches.®18-211 Many of these studies
rely on high-throughput DFT screening
to rank material candidates; after which
the most promising candidates are then
tested in the lab.[?>?*] However, the large
computational cost associated with DFT calculations prohibits
extensive exploration of the chemical space; and this approach
does not account for the gap between simulations and experi-
ments. The former drawback has been addressed in recent years
with the help of machine learning models that learn from exist-
ing datasets and screen much larger chemical spaces.>?’] The
inability to bridge the gap between theory and experiments has
been addressed in a small number of studies; valuable precedents
in literature achieve this using closed-loop strategies.[28-34]

Prior such studies either required predefined functional forms
for the data fusion methods to integrate available data and ac-
quired data; or the presence of relevant sampled data to estimate
the property distribution. The first requirement limits how infor-
mation can be transferred between the two data sources; while
the latter is computationally expensivel?] or may even be impos-
sible to curate from available datasets. Consequently, accurate
learning of material-property relationships is limited, and this
militates against efficient materials exploration quantified by ac-
curacy scores on data acquired and ranked according to perfor-
marnce.

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 1. Error correction learning to enable closed-loop materials discovery. a) The approach taken herein to performing error-correction learning (ECL)
on predictions from a pre-trained machine learning model, addressed as the Prior model. The error-correction network takes two chemical compositions
(Cy and G,) as inputs and predicts if C; has a power factor larger than C,. b) Three approaches employed and compared for the purpose of vectorial
representation of chemical compositions. Magpiel“] generates vectorial representation using basic statistical operations such as summation, average,
standard deviation, min, and max operations on elemental properties. Roost[*®] uses a soft-attention based mechanism and converts stoichiometric
graphs to numerical vectorial representations. CrabNet!’] generates a numerical representation for chemical compositions using self-attention and
transformer architecture. We benchmark all these approaches using their accuracy on literature data and accuracy on collected experimental data. c)
Our closed-loop approach: we start with the model and make predictions within the chemical space. The top candidates are used for lab experimentation

and fed back to our error correction module for improving prediction accuracy.

We hypothesized that a data-driven strategy for information
transfer between the available and acquired data could overcome
the first limitation. The problem of uniformly sampling the ma-
terials space to acquire an informed prior can then be addressed
independently: it becomes equivalent to the development of ac-
curate ML surrogate models. We combine these two strategies,
and demonstrate a two-step error correction learning approach:
learning from existing datasets and iterative refinements with
new experimental results (Figure 1 for details of the discovery
process).

We apply this strategy to the discovery of earth-abundant and
low-temperature thermoelectric materials (300 K) via optimiza-
tion of the experimental power factors (PF). We explore the
material space through the synthesis of new inorganic com-
pounds, finding that doping and alloying lead to the family of
low-temperature thermoelectric materials PbSe:SnSb. The pre-
dicted best candidate exhibits a power factor 2x that of PbSe,
and is the highest among previously reported low-temperature-
(<300 ©C)-synthesized materials. In the process, we find that
chemical representation as well as the accuracy of ML models
on available datasets play quantitatively significant roles in accel-
erating closed-loop materials discovery. Exploration using DFT
of the origins of higher power factor shows the interaction of Se
and Sb in PbSe:SnSb leads to a reduced hole effective mass and
increased power factors. The work shows that ECL-based closed-
loop approaches account for factors traditionally difficult to pa-
rameterize in materials discovery.
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2. Results and Discussion

2.1. Error-Correction Learning with Experiments

In a standard ML-based materials screening pipeline, one learns
the mapping between material structures/compositions and the
outcome variable(s) of interest.[3>% The trained model is used to
screen large chemical spaces and rank the promising candidates.
The top-ranked candidates are then validated experimentally.(®39]
However, synthesis conditions such as the synthesis method (hy-
drothermal or sputtering or ball milling), morphologies (pow-
der or single crystal or nanoparticles), postsynthesis treatment
(annealing or etching), state of the precursors (metal salts or
metal alkoxides), and source of energy (microwave or ultrasound
or laser) differ from one experimental laboratory to another.
These potentially significant factors are difficult to parameterize,
making it hard to predict synthetic outcomes using ML models
trained on historical data, especially from lab to lab. As a result,
additional experiments within a new lab are required to explore
the chemical space and find the optimal material candidate.

With this in mind, we formulate the challenge as an error-
correction problem: the observed outcomes of our in-lab exper-
iments (denoted by y) for two compositions ¢, and ¢, can be ex-
pressed as

_ JOif PF (¢, Ty) = PF (c,, T) ,
Y=\ 1if PF(c, T,) < PF (e, T)) @

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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where ¢, and ¢, are the materials we wish to compare, T, and
T, are the temperatures at which we make the comparison, and
PF(-) represents the in-lab measured power factor (or generally
any other property of interest). y is dependent on the synthesis
parameters and methods. It is thus not easy to merge y with exist-
ing datasets coherently and train the ML model on the combined
data. Instead, we propose to model the observed outcome y using
an error-correction strategy

Y=g <X1’X2’ T,, T, m) (2)

where X, and X, are vectorial representations for the two mate-
rials compositions ¢, and ¢, to be compared; T; and T, are the
temperatures at which to make the comparison; PF(-) represents
the power factor (or other property of interest) and m is the prior
model trained on existing datasets as one would do in a high-
throughput ML search pipeline. The exact form of the error cor-
rection function is unknown. To avoid parametric biases, we use
a dense neural network, g, that can learn from data to model the
error correction function (Figure 1a). The proportion of error cor-
rection that is achievable depends on the quantity of data, model
m, and methods used for the vectorial representation of chemical
compositions.

We hypothesize that error-correction learning (ECL) enables
correction of the predictions made by the ML model trained on
a historical dataset. The neural network g, learns to map the ex-
perimental quantities obtained under a certain set of consistent
experimental conditions to the new set of experimental condi-
tions. By choosing a neural network (or generic machine learn-
ing model with good accuracy), we learn implicitly to account for
the factors that have led to changes in experimental observations
between historical data and our experiments.

2.2. Discovery of Large Power Factor Thermoelectrics

We apply error-correction learning to the discovery of promising
thermoelectric materials. We pursue it by first training a prior
model on existing data. For training we use a dataset of thermo-
electric materials and their experimental properties*!! compiled
in a recent study.®] The dataset reports thermoelectric metrics:
conductivity (o), figure-of-merit (zT), and power factor (PF), mea-
sured experimentally in the lab for 573 doped and alloyed mate-
rials, spanning 52 distinct elements. These elements are high-
lighted in the periodic table of Figure S1 in the Supporting In-
formation. The distribution of the material compositions and re-
ported power factors within this dataset are visualized in Figure
S2in the Supporting Information. The dataset covers a diverse set
of chemical compounds comprising oxides, other chalcogenides,
silicides, germanides, metal alloys, and antimonides.

We train ML regression models to predict the PFs using ma-
terial compositions and measurement temperatures as predic-
tors. We use the TPOT library to perform model search, opti-
mal preprocessing step selection and hyperparameter tuning.[*?]
TPOT searches through various ML models (support vector
machines, linear regressions, gradient boosted trees, random
forests, decision trees, gaussian processes) and their combina-
tions to find the model with the best performance. For train-
ing, the entire dataset is randomly split between 80% training

Adv. Mater. 2023, 2302575 2302575 (3 of 8)

www.advmat.de

and 20% testing dataset. Hyperparameter optimizations are per-
formed using fivefold cross-validation seeking to maximize the
cross-validation coefficient of determination (r?) between target
and predicted values. Furthermore, since material compositions
can be represented using various methods, we test three dis-
tinct representations—Magpie,[**] Roost, 38! and CrabNet!*” and
choose the one with the best cross-validation score as the prior
model for driving closed-loop experiments. Figure 1b shows a
high-level summary of how these three representations differ.
We use transfer learning for training with Roost and CrabNet
approaches due to the relatively smaller size of the dataset. The
features extracted after the global pooling layer are used to rep-
resent different compositions and as input features to train the
model (refer to Notes S1 and S2 in the Supporting Information
for details on ML model training and the models considered).

Interestingly, the prior model trained using Magpie showed
the best cross-validation performance outperforming Roost and
CrabNet (refer to Figure 2a for a comparison of various repre-
sentations and ML models we trained and compared). We ex-
plore this observation by analyzing the distribution of the gener-
ated representations by each of the methods (Figure S3, Support-
ing Information). Due to its min-max operators, we observe that
Magpie generates a less smooth representation that can better
capture the doping and alloying effects. On the other hand, Roost
and CrabNet have smoother changes in the representation vec-
tors for different materials and that is reflected through lower ac-
curacies for power factor prediction, a property sensitive to small
amounts of alloying and doping. Furthermore, to establish the
efficacy of TPOT in finding the optimal ML models, we also sep-
arately train and optimize the hyperparameters of the Random
Forest regression model using the same training-testing splits
and same number of cross-validation splits (Figure 2a; Notes S1
and S2, Supporting Information).

After training the prior model, we explore the chemical space
to discover low-temperature large power factor materials. In ex-
ploration, we limit ourselves to specific precursors and elements.
We focused on materials synthesized below <300 ©C and avoided
regulated materials from the list {As, Cd, Hg, Te, Tl}. Chalco-
genides present as part of the material precursors are further
screened based on their power factors (PFs) reported in the Ma-
terials Project.l*}] This results in the list of available precursors
(Note S3 in the Supporting Information for the complete list).

As the first step, we measure the experimental PF for all the
chalcogenide compositions in their original phase (i.e., without
any alloying or doping). The error-correcting dense neural net-
work (DNN) is then trained using the MagPie representation and
predictions of prior model as inputs. The model is trained to
predict the binary comparison variable using the experimentally
measured in-lab power factor (refer to Equation (1) for the defi-
nition of this binary variable). We optimize the hyperparameters
and estimate the generalization using fivefold cross-validation ac-
curacy. The most generalizable model is then used to explore a
new set of compositions for peak performance at 300 K that is
fed back, and the cycle is repeated. We explored different ma-
terial engineering strategies in every round: composites, alloys
and dopants (Note S4 in the Supporting Information for more
details). We also list each of the compounds tested within every
round of experimentation in Note S4 in the Supporting Infor-
mation. With every round of experimentation, the ability of the
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Figure 2. Performance of machine learning models with and without ECL on available and acquired data. a) Performance of the model with the best
set of hyperparameters chosen based on the cross-validation performance quantified using mean absolute error (MAE) and coefficient of determination
(R?). We found that Magpiel“®l based featurization outperformed transfer learning using Roost[*®] and CrabNet.[>’] Here, the suffixes TPOT and RFR
refer to the model used to belong to the one found by the TPOT library and Random Forest Regressor respectively. The ML model found by the TPOT
library for all 3 representations is a combination of multiple ML models. Refer to Note S2 in the Supporting Information for the exact architecture and
hyperparameters. b) Performance for each model before and after performing ECL as described in the study. The prior accuracy is measured across all
compositions and temperatures based on power factor ranking. The error-corrected accuracy is reported based on ordering at 219 ©C. ECL improves
the accuracy for all cases. The improvement, however, depends upon both on featurization used and the initial prior model. The improvement varies as
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Accuracy fraction
i

Coefficient of determindation (R?)

much as 0.16-0.40.

error-correction model to account for the experimental changes
improves (Figure 1c for the schematic on workflow). Multiple
rounds of the feedback loop and exploration finally yield (PbSe):(2
wt% SnSb) as the optimal composition (refer to the section be-
low for details on experimental characterization). We terminate
the feedback loop if the top predicted material candidate remains
unchanged after retraining the error-correction model using all
the experimental data, including the latest round of experiments.

The results of hyperparameter optimizations are summarized
in Figure S4 in the Supporting Information. To establish a base-
line, we also evaluate random forest classifiers and gradient
boosting classifiers for their error-correction capacity using cross-
validation accuracy (Note S5, Supporting Information) and find
that they underperform as compared to DNNs.

We compare the effect of change in the prior model on the ac-
curacy of the error-correction learning (ECL) model (Figure 2b).
For this, we train the error correction model on all the data col-
lected from the experiments conducted before the last round of
experiments. The accuracy is then evaluated on the last unseen
round of experiments. We find that higher accuracy prior models
lead to higher accuracy on error-corrected predictions. Interest-
ingly, models sharing the same chemical representation also tend
to perform similarly, i.e., Magpie-based models, even though dif-
fering in prior model’s accuracy show high error-corrected ac-
curacies. Similarly, both the CrabNet-based models show simi-
lar accuracies post error correction. This observation aligns with
the discussion before on the origin of higher accuracy observed
with Magpie-based representation (Figure S3, Supporting Infor-
mation). This indicates that choosing an appropriate representa-
tion is essential while driving closed-loop experimentation. We
also compared these results to the case where we used a weight-
sharing network instead of a DNN. The trends were similar but
with lower accuracy (Figure S5, Supporting Information).

Adv. Mater. 2023, 2302575 2302575 (4 of 8)

The effectiveness of error-correction learning depends upon
the specific chemical representation utilized, a finding that high-
lights the sensitivity of the approach to the choice of representa-
tion. It therefore becomes important for practitioners to choose
the appropriate chemical representation. The choice, as demon-
strated in this study, can be made based on cross-validation ac-
curacy once the first round of experiments has been performed.
This choice can also be seen in the form of a trade-off between
computation power and number of experiments. Validating and
testing different representations to find better error-correcting
models require more computation time (for instance a few GPU
hours if training neural networks). This increase in computation
cost allows us to reduce the number of experiments that need to
be performed.

We find that the next-best model CrabNet, after error correc-
tion on the ranking of compounds, underperforms. As a re-
sult, at least one more round of experimentation is needed to
reach the optimal candidate (Figure 2b). Thus, the accurate prior
model developed herein reduces the number of experiments by
at least (1/5 x 100%) = 20% (the total number of rounds of
experiments in such a scenario would be 5). The best candi-
date composition (PbSe) o5 (S1Sb), o, is ranked at 98th if the ma-
terial candidates are ranked according to the order of decreas-
ing power factors using the most accurate prior model. Thus,
compared to the conventional high-throughput screening ap-
proach of testing the high-ranked predictions from the prior
model, the current approach reduces the number of candidates
that need to be tested by as much as 83%, i.e., less than 1/3rd
the number of experiments that would need to be conducted.
We also compare our approach to a modified version of the
previously proposed data fusion approach!?®! in Table 1 (refer
to Note S6 in the Supporting Information for implementation
details).

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 3. Thermoelectric performance of materials measured experimentally. a—c) Show conductivity (c), Seebeck coefficient (S), and power factor (PF)
trends for stoichiometric compounds as a function of temperature. PbSe shows the highest power factor due to a balance between conductivity and
Seebeck coefficient. d—f) ¢, S, and PF trends for our predicted most promising compositions (PbSe):(SnSb),. We observe that the best composition has

a power factor twice that of the undoped PbSe.

Table 1. We tabulate the accuracy and compare a former approach that
requires defining rules for data fusion to our approach that utilizes dense
neural networks for error correction.

Method Accuracy on the final-round data at
219 °C

Probabilistic constraint data-fusion!??] 0.57

ECL (this study) 0.99

2.3. Experimental Validation

While the synthesis of inorganic compounds by solution method
is tedious due to the limited number of suitable metal salts
and solubility issues, vacuum techniques require an extensive
amount of time for optimization. As such, we adopted ball
milling to synthesize some of the predicted compounds owing
to its high yield and faster optimization rate. We tested the top
candidates from ML predictions and evaluated the compounds’
thermoelectric properties. The measured properties were fed to
the error correction module to improve the accuracy.

We observe that the highest electrical conductivity (o) was ob-
tained for SnSb with a low Seebeck coefficient (S). Stoichiom-
etry change and forming composite with Pbl, did not improve
Seebeck of SnSb. However, its combination with PbSe resulted
in balanced o and S. Temperature-dependent ¢ and S (refer to
the characterization subsection of the Experimental Section for
more details) of the stoichiometric compounds, SnSe, Wse,,
GaTe, and CrZnTe, exhibit semiconducting behavior while SnSb,

Adv. Mater. 2023, 2302575 2302575 (5 of 8)

PbSe, and NbSe, show metallic behavior. Notably, CrZnS, has
extremely low electrical conductivity and consequently high See-
beck (Figure 3a—c). The highest electrical conductivity is observed
in the case of SnSb (>10000 S cm™!) which leads to a very low
Seebeck coefficient. PbSe exhibits the largest power factor among
the stoichiometric compounds due to balanced electrical conduc-
tivity and Seebeck. Despite of extraordinary conductivity of SnSb,
its modest power factor is a consequence of low Seebeck. In con-
trast, PbSe shows good Seebeck, but its electrical conductivity is
not very high (We compare conductivities of many composites
made and tested but not added to Figure 3b in Figure S6 in the
Supporting Information).

These findings align with the prediction that addition of
SnSb to PbSe improves the power factor. We observe that small
amounts of SnSb addition enhance the electrical conductivity of
PbSe with a minor decrease in Seebeck (refer to materials subsec-
tion of the Experimental Section for details on synthesis and ma-
terials). Therefore, the PbSe/SnSb composition results in a high
power factor of more than 850 uW mK~2 at room temperature
for 2 wt% SnSb, and good performance is observed in the whole
temperature regime (Figure 3d—f). Such a high-power factor for
the present composite is comparable to state-of-the-art polycrys-
talline thermoelectric materials prepared by similar methods
(Figure S7, Supporting Information). High performance room-
temperature thermoelectric materials are particularly lucrative
for various applications including sensors, heat spreaders, in-
ternet of things and portable electronics.**! We would like to
point out that most high-performance thermoelectric materials
are synthesized by high-temperature techniques in the form of

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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Figure 4. Structural and DFT analysis of the best thermoelectric candidates a) shows XRD plots for (PbSe):(SnSb), composite. b) Band structure of
PbSe along the high-symmetry path. c) shows band structure of (PbSe):(2 wt% SnSb) along the high-symmetry path in the reciprocal space. The change
in curvature of the state just below the defect state in the valence band leads to a reduction in the effective mass and therefore, improved transport
properties (refer to Figures S10 and S11 in the Supporting Information for close-ups).

single crystals whereas in the present work, polycrystalline mate-
rials are used without any extensive processing giving compara-
ble performances at 300 K. It should be noted that further perfor-
mance improvement can be anticipated by additional processing
techniques, such as spark plasma sintering, generally employed
in the case of high-performance thermoelectric materials.

2.4. Origins of High Power Factor

To increase understanding of the atomistic origin of the high per-
formance of (PbSe), 44(SnSb), (,, we perform density functional
theory (DFT) calculations (refer to the DFT subsection of the Ex-
perimental Section for details). We obtain the unit cell for the
PbSe supercell from Materials Project!**] and use it to construct
a 216 atoms supercell. Experimental X-ray diffraction (XRD) in-
dicates that a small amount of alloying does not change the struc-
ture (Figure 4a). We use this information to optimize the geome-
try of the SnSb doped PbSe supercell by relaxing only the atomic
positions and keeping the lattice constants fixed using the gener-
alized gradient approximation (GGA) exchange-correlation (xc)
functional (refer to Figures S6 and S7 for pictorial representa-
tion). We perform self-consistent HSE06 xc-functional calcula-
tions on the pristine and doped relaxed structures while incor-
porating spin—orbit coupling (SOC). Comparing the electronic

Adv. Mater. 2023, 2302575 2302575 (6 of 8)

structure of PbSe with PbSe:SnSb, we observe that the introduc-
tion of Sn and Sb modulates the density of states (DOS) near
conduction band minimum (CBM) and valence band maximum
(VBM) respectively. This modulation decreases the hole effective
mass, improving the overall transport property of the PbSe:SnSb
composite (Figure 4D,c) thereby resulting in a larger power factor.
Please refer to Figures S10 and S11 (Supporting Information) for
effective mass fitting plots.

3. Conclusions

We have developed and demonstrated a two-step error correc-
tion learning approach to performing theory-driven closed-loop
experimental exploration of thermoelectric materials. In the pro-
cess, we trained an ML model that outperformed prior mod-
els in the accurate prediction of experimental power factors.
This improvement in accuracy reduces the number of in-lab ex-
periments. The approach enables discovery of a thermoelectric
material (PbSe),qg:(SnSb),,, that exhibits a large power factor.
DFT simulations show that the performance improvements are
mainly a result of the chemical interactions and not structure dis-
tortions. The approach to thermoelectric materials may well be
extended to the discovery of materials for applications requiring
high conductivity and improved optoelectronic properties.

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH
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4. Experimental Section

Data: The dataset collected by DopNet!®] authors from the Materials
Research Laboratory (MRL) are used for training the prior models. It is
available at https://github.com/ngs00/DopNet and the original data can
be found at http://www.mrl.ucsb.edu:8080/datamine/thermoelectric.jsp.
Data based on in-lab experiments is available at https://github.com/
hitarth64/TherML.

Code Availability:  All the code and data used for this study are available
as open source at https://github.com/hitarth64/TherML. All the trained
models were also provided so that they can be used for future explorations.

Materials:  Sn, Se, S, Zn, Te, and Cr powders were purchased from
Sigma-Aldrich. PbSe, Sb, and WSe, were purchased from Alfa-Aesar.
NbSe,, GaSe, and Ga,Te; were procured from American Elements.

SnSe, SnSb, Cr,ZnS,, and Cr,ZnTe, were synthesized by ball milling
stoichiometric amounts of precursors for 8, 15, 32, and 32 h at 30 Hz,
respectively. All composites were obtained by ball milling the respective
compounds (e.g., SnSe and SnSb) for 20 min at 30 Hz.

Characterization:  Electrical conductivity and Seebeck measurements
were performed on Netzsch SBA 548 Nemesis thermoelectric set up un-
der He environment. Samples were prepared by loading the powders into
a steel compaction die and compressing them to form pellets for ther-
moelectric measurements. All pellets were annealed at 250 °C inside an
N, glovebox before thermoelectric measurements. The instrument un-
certainty for electrical conductivity and Seebeck measurements are +5%
and +7%, respectively. As a result of the very low electrical conductivity
of Cr,ZnS,, room temperature Seebeck was measured using a manual
setup consisting of Peltier devices and a thermocouple. For thermal volt-
age measurements, a homemade setup was used with Peltier devices and
thermocouples to apply the temperature gradient across the sample, and
the voltage was recorded using a Keithley 6517B electrometer. XRD was
measured using Bruker D8 Advance.

Density Functional Theory:  All DFT relaxations are performed using Vi-
enna Ab initio Simulation Package (VASP) 6.2.1. We used the Perdew—
Burke—Ernzerhof (PBE)[*’] exchange-correlation functional for geometry
optimization of the material systems. The energy cut-off for the plane wave
was set to 520 eV. The energy threshold for self-consistent energy conver-
gence was set to 1073 eV whereas the global convergence threshold was
set to 1072 eV energy difference between two successive ionic steps. A
smearing width of 0.05 eV, consistent with the Materials Project, was cho-
sen for calculations. Calculations were performed over a uniform k-points
grid of 2 X 2 x 2 generated using the Monkhorst scheme.[46]

Given the optimized geometry, static DFT calculation was performed
using hybrid HSE06[4’] functional while incorporating the spin—orbit cou-
pling (SOC) effect over high-symmetry points of the reciprocal lattice using
all-electron DFT code FHI-AIMS.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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